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Abstract This paper studies analytic Liouville-non-integrable and C∞-Liouville- in-

tegrable Hamiltonian systems with two degrees of freedom. We will show that consid-

erably general Hamiltonians than the one studied in [2] have the property. We also

show that a certain monodromy property of an ordinary differential equation obtained

as a subsystem of a given Hamiltonian and the transseries expansion of a first integral

play an important role in the analysis. In the former half we will show that the an-

alytic Liouville-non-integrability holds for a rather wide class of Hamiltonians under

a certain monodromy condition. For these analytic non integrable Hamiltonians we

cannot construct nonanalytic first integrals concretely as in [2]. In the latter half, we

show the nonanalytic integrability from the viewpoint of a transseries expansion of a

first integral. We will construct a first integral in transseries formally under general

situation. Then we show convergence of transseries or existence of the first integral

which is asymptotically equal to a given formal transseries solution.
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1 Introduction

A Hamiltonian system in n degrees of freedom is said to be C∞-Liouville-integrable

if there are n smooth first integrals in involution which are functionally independent

on an open dense set. If the first integrals are analytic, then we say that it is analytic-

Liouville-integrable. In [2], Gorni and Zampieri showed the existence of a Hamiltonian
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system with two degrees of freedom which is not analytic-Liouville-integrable, while

it is C∞-Liouville-integrable. The geometrical motivation to study such an example

comes from the integrability of a geodesic flows and the Tǎimanov’s problem. (cf. [2]).

We note that the proof of analytic-nonintegrability relies on the power series expansion

of a first integral, and the C∞- integrability was proved by constructing concretely a

smooth first integral. (cf. Remark after Corollary 1.) In this paper, we are interested in

the analytical structures which yield nonintegrability in the framework of rather general

Hamiltonians than those in previous works. In fact, we will show that the monodromy

property of a certain subsystem of a given Hamiltonian plays an important role.

For these analytic-nonintegrable Hamiltonians, we cannot construct a nonanalytic

first integral concretely, and instead we make use of a transseries in order to construct

such an integral. An integral in a transseries expansion is constructed via the Lagrange-

Charpit system of a certain vector field obtained by restricting a given Hamiltonian

vector field to an invariant manifold. The construction of a first integral as a formal

transseries is elementary, while the convergence part is complicated due to the degen-

eracy of a given Hamiltonian. We will study the convergence from two different points

of view, transformation of transseries and Borel summability method for transseries.

This paper is organized as follows. In §2 we prove the analytic-Liouville- nonin-

tegrability under the monodromy condition. (Theorem 1). In §3 we give the proof of

Theorem 1. In §4 we prove the transseries expansion of the integrals in a formal sense.

The convergence in a curved region and transformation of transseries are discussed in

§5. In §6 we study the asymptotic property of transseries in terms of Borel summability

method.

2 Analytic nonintegrability

Let σ ≥ 1 be an integer and let r(q1, q2, p1, p2) be an analytic function of (q1, q2, p1, p2) ∈
�

4 in some neighborhood of the origin 0 ∈ �
4 such that

r ≡ r(q1, q2, p1, p2) = q2σ
1 + a(q2σ

1 )q2
2 + r̃(q1, q2, p1, p2)q

3
2 , (1)

where r̃(q1, q2, p1, p2) is analytic at the origin and a(t) (t = q2σ
1 ) is a polynomial of t

such that a(0) > 0. We are interested in the following analytic Hamiltonian in �
4 with

two degrees of freedom

H = −q2p2∂q1r +
�
r2 + q2∂q2r

�
p1, (2)

where ∂q1 = ∂
∂q1

and ∂q2 = ∂
∂q2

. The associated Hamiltonian system is given by

��������
�������

q̇1 = ∂H/(∂p1) = r2 + q2∂q2r + (2r∂p1r + q2∂q2∂p1r)p1 − q2p2∂p1∂q1r,

q̇2 = ∂H/(∂p2) = −q2∂q1r − q2p2∂q1∂p2r + p1(2r∂p2r + q2∂q2∂p2r),

ṗ1 = −∂H/(∂q1) = q2p2∂
2
q1r − (2r∂q1r + q2∂q1∂q2r) p1,

ṗ2 = −∂H/(∂q2) = p2∂q1r + q2p2∂q1∂q2r −
�
2r∂q2r + ∂q2r + q2∂2

q2r
�

p1.

(3)

We need a definition in order to state our theorem.
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Definition 1 We say that a polynomial a(t) satisfies the monodromy condition (M)

if the following equation has no polynomial solution U(t)

2σt2U ′ − 4σU + (1 − 6σ)tU = (t + 1)a(t). (4)

Then we have

Theorem 1 Assume that a(t) satisfy (M). Then the Hamiltonian system (3) is not

analytic-Liouville-integrable in any neighborhood of the origin. More precisely, for any

analytic first integral u = u(q1, q2, p1, p2) of (3) in �
4, there exists a function φ of

one-variable, being analytic at 0 ∈ � such that u = φ ◦ H.

If a(t) ≡ 1, then we can easily see, from the direct computations or by Lemma 2 of [3]

that (M) is satisfied. Hence we have

Corollary 1 Suppose that σ = 1, a(t) ≡ 1 and r̃ ≡ 0 in (1). Then the Hamiltonian

system (3) is not analytic-Liouville-integrable in any neighborhood of the origin.

Remark. (a) As to the fundamental properties of (M) we refer [3]. In this paper, we

change the terminology for the sake of simplicity. We remark that (M) is a generic

condition.

(b) Theorem 1 is a generalization of [4, Theorem 1], where the function r in (1) was

supposed to be independent of p1 and p2. Corollary 1 was proved in [2]. In this case,

it is not difficult to see that (3) in Corollary 1 is C∞-Liouville-integrable, because it

has a smooth first integral

u =

�
q2 exp

�− 1
r

	
if (q1, q2) �= (0, 0),

0 if (q1, q2) = (0, 0).
(5)

On the other hand, it is not known whether (3) in a general case has a nonanalytic

first integral because one cannot construct the first integral of (3) concretely since r

also depends on p1 and p2. In §4 we will study the integrability from the viewpoint of

transseries.

3 Proof of theorem

The proof of Theorem 1 is done by the argument in [3]. For the sake of completeness

we give the proof.

Proof (of Theorem 2.1) By the suitable change of the variable q2 one may assume that

a(0) = 1. Let u = u(q1, q2, p1, p2) be any analytic first integral of (3). We note that u

is the first integral of the Hamiltonian system (3) if and only if u is a solution of the

following first order equation

{H, u} ≡
�
q2p2∂2

q1r − (2r∂q1r + q2∂q1∂q2r) p1

� ∂u

∂p1
(6)

+
�
p2∂q1r + q2p2∂q1∂q2r −

�
2r∂q2r + ∂q2r + q2∂2

q2r
�

p1

� ∂u

∂p2

+
�
r2 + q2∂q2r + (2r∂p1r + q2∂q2∂p1r)p1 − q2p2∂p1∂q1r

� ∂u

∂q1

+ (−q2∂q1r − q2p2∂q1∂p2r + p1(2r∂p2r + q2∂q2∂p2r))
∂u

∂q2
= 0.
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We define

v ≡ v(q1, p1, p2) := u(q1, 0, p1, p2). (7)

By setting q2 = 0 in (6) and noting that ∂q2r(q1, 0) ≡ 0 and r(q1, 0) = q2σ
1 by (1), we

obtain

2σp2
∂v

∂p2
− 4σq2σ

1 p1
∂v

∂p1
+ q2σ+1

1
∂v

∂q1
= 0. (8)

We expand v into the power series of p2, v =

∞

j=0 vj(q1, p1)p
j
2. Then we see that

vj(q1, p1) (j = 0, 1, . . . ) satisfy

2σjvj − 4σq2σ
1 p1

∂vj

∂p1
+ q2σ+1

1

∂vj

∂q1
= 0, j = 0, 1, 2, . . . (9)

We want to show that vj = 0 if j �= 0, and v = φ(p1q
4σ
1 ) for some analytic func-

tion φ(t) of one variable. Indeed, by substituting the expansion of vj vj(q1, p1) =
∞
ν=0 vj,ν(q1)p

ν
1 into (9) we obtain

2σjvj,ν − 4σνq2σ
1 vj,ν + q2σ+1

1

∂vj,ν

∂q1
= 0, j = 0, 1, 2, . . . (10)

If we expand vj,ν into the power series of q1, then we can easily see that vj,ν ≡ 0 for

all ν = 0, 1, . . . , if j �= 0. Hence we have vj = 0 if j �= 0. It follows that v = v0(q1, p1).

Moreover, by (9) v satisfies the equation

−4σp1
∂v

∂p1
+ q1

∂v

∂q1
= 0.

If we substitute the expansion of v into the equation, then, by simple computations,

we easily see that v = φ(p1q4σ
1 ) for some analytic function φ(t) of one variable. This

proves the assertion.

It follows from (2) that v = v0 = φ(p1q
4σ
1 ) = φ(H|q2=0). We define

g(q1, q2, p1, p2) := u(q1, q2, p1, p2) − φ(H). (11)

By (7) and by recalling that H is a first integral we see that g is an analytic solu-

tion of (6) such that g(q1, 0, p1, p2) ≡ 0. In order to prove Theorem 1 we shall show

g(q1, q2, p1, p2) ≡ 0 in some neighborhood of the origin. First we will show that

g(q1, q2, p1, p2) = φ1(p1q4σ
1 )p2q2 + h2(q1, p1, p2)q

2
2 + h̃3(q1, q2, p1, p2)q

3
2 , (12)

for some analytic function φ1 of one variable and analytic functions h2 and h̃3. Because

g is analytic we have the expansion

g(q1, q2, p1, p2) = g1(q1, p1, p2)q2 + h2(q1, p1, p2)q
2
2 + h̃3(q1, q2, p1, p2)q

3
2 . (13)

We substitute (13) with u = g into (6) and compare the coefficients of q2. By (1) we

have

−4σq2σ
1 p1

∂g1

∂p1
+ 2σ

�
p2

∂g1

∂p2
− g1

�
+ q2σ+1

1
∂g1

∂q1
= 0. (14)
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By substituting the expansion g1(q1, p1, p2) =

∞

m=0 g1,m(q1, p1)p
m
2 into (14) and by

comparing the coefficients of pm
2 we obtain

−4σq2σ
1 p1

∂g1,m

∂p1
+ 2σ(m − 1)g1,m + q2σ+1

1

∂g1,m

∂q1
= 0. (15)

If m �= 1, then we obtain a similar equation as for vj in (9). Hence we have g1,m = 0

if m �= 1. It follows that g1 = g1,1p2, and g1,1 satisfies the equation −4σp1
∂g1,1
∂p1

+

q1
∂g1,1
∂q1

= 0. By the same argument as in the above, we see that g1 = g1,1p2 =

φ1(p1q4σ
1 )p2 for some analytic function φ1 of one variable. This proves the assertion.

Let us now suppose that

g(q1, q2, p1, p2) = φn−1(p1q4σ
1 )pn−1

2 qn−1
2 (16)

+ hn(q1, p1, p2)q
n
2 + h̃n+1(q1, q2, p1, p2)q

n+1
2 ,

for some n ≥ 2, some analytic function φn−1 of one variable and analytic functions

hn(q1, p1, p2) and h̃n+1(q1, q2, p1, p2). Then we substitute (16) into (6) with u = g and

we compare the coefficients of qn
2 . By (1) we have

2pn
2 σ(2σ − 1)q6σ−2

1 φ′
n−1 − 4a(q2σ

1 )(q2σ
1 + 1)(n − 1)p1pn−2

2 φn−1 (17)

− 4σq4σ−1
1 p1

∂hn

∂p1
+ 2σq2σ−1

1

�
p2

∂hn

∂p2
− nhn

�
+ q4σ

1
∂hn

∂q1
= 0.

By substituting the expansion hn(q1, p1, p2) =

∞

m=0 hn,m(q1, p1)p
m
2 into (17) and by

comparing the coefficients of pn−2
2 we obtain

−4σq4σ−1
1 p1

∂hn,n−2

∂p1
− 4a(q2σ

1 )(q2σ
1 + 1)(n − 1)p1φn−1 (18)

− 4σq2σ−1
1 hn,n−2 + q4σ

1
∂hn,n−2

∂q1
= 0.

We will show that

hn,n−2 = 0, φn−1 = 0. (19)

If we can prove φn−1 = 0, then it follows from (18) that v := hn,n−2 satisfies a

similar equation as (9). Hence, by the same argument as for (9) we have hn,n−2 = 0.

In order to show φn−1 = 0 we insert the expansions

φn−1(p1q4σ
1 ) =

∞
k=0

φn−1,k pk
1q4σk

1 , hn,n−2(q1, p1) =

∞
k=0

hn,n−2,k(q1)pk
1 (20)

into (18) and we compare the coefficients of pk
1 . Then we obtain, for k ≥ 0

−4σq4σ−1
1 khn,n−2,k − 4σq2σ−1

1 hn,n−2,k + q4σ
1

∂hn,n−2,k

∂q1
(21)

= 4a(q2σ
1 )(q2σ

1 + 1)(n − 1)φn−1,k−1q
4σ(k−1)
1 ,

where we set φn−1,−1 = 0. If we set q1 = 0 and k = 1 in (21), then, by a(0) = 1, we

obtain 0 = 4(n − 1)φn−1,0, which implies φn−1,0 = 0.
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Suppose that φn−1,k−1 �= 0 for some k ≥ 2. We divide both sides of (21) by

q2σ−1
1 . Then the right-hand side of (21) is divisible by qN

1 , N = 4σ(k − 1) + 1 − 2σ ≥
2σ + 1. Because the operator −4σkq2σ

1 + q2σ+1
1 (d/dq1) in the left-hand side of the

equation increases the power of q1, it follows that hn,n−2,k is divisible by qN
1 . We set

hn,n−2,k(q1) = qN
1 W (q1). Then we have q1(d/dq1)hn,n−2,k = qN

1 (N + q1(d/dq1))W .

It follows from (21) that W satisfies

(N − 4σk)q2σ
1 W − 4σW + q2σ+1

1
dW

dq1
(22)

= 4a(q2σ
1 )(n − 1)φn−1,k−1(q2σ

1 + 1).

We set W =

2σ−1

j=0 qj
1Wj(q

2σ
1 ). Because the right-hand side of (22) is a function of

q2σ
1 , Wj (1 ≤ j < 2σ) satisfy

q2σ
1 (N − 4σk + j)Wj − 4σWj + q2σ+1

1

dWj

dq1
= 0. (23)

By a similar argument as for (9) we have Wj = 0 for 1 ≤ j < 2σ. Hence we have

W (q1) = W0(q
2σ
1 ) =: V (t) (t = q2σ

1 ). Because q1(d/dq1)V = 2σt(d/dt)V , it follows

from (22) that

(1 − 6σ)tV − 4σV + 2σt2
dV

dt
= 4a(t)(n − 1)(t + 1)φn−1,k−1.

If we set U := V/(2(n − 1)φn−1,k−1), then U is an analytic solution of (4). This

contradicts to the assumption of the theorem, because we assume that (M) is not

verified. Hence we have φn−1,k−1 = 0. Because k is arbitrary we have φn−1 = 0.

Next we set φn−1 = 0 in (17) and consider the coefficients of pm
2 (m �= n). Then we

see that hn,m satisfies a similar equation as for (9). Hence we have hn,m = 0 if n �= m,

and hn,n = φn(p1q4σ
1 ) for some analytic function φn of one variable. It follows that

hn(q1, p1, p2) = hn,n(q1, p1)p
n
2 = φn(p1q4σ

1 )pn
2 . Hence we have (16) with n replaced by

n + 1. By induction we obtain (16) for an arbitrary integer n ≥ 2.

It follows from (16) with n replaced by n + 2 that, for every n ≥ 0 we have

∂n
q2g(q1, 0, p1, p2) ≡ 0, where (q1, p1, p2) is in some neighborhood of the origin which

may depend on n. On the other hand ∂n
q2g(q1, 0, p1, p2) is analytic in some neighborhood

of the origin independent of n. By analytic continuation, we have ∂n
q2g(q1, 0, p1, p2)

≡ 0 in some neighborhood of the origin independent of n. By the partial Taylor ex-

pansion g =



n ∂n
q2g(q1, 0, p1, p2)q

n
2 /n!, we have g = 0.

4 Transseries expansion of first integral

In this section, we shall construct a first integral of (3) as a transseries. (cf. [1]). In

order to introduce such a series we consider the terms in (6) which preserve the order

of q2

Lu := q2σ−1
1

�
2σ(p2

∂u

∂p2
− q2

∂u

∂q2
) + q2σ

1 (q1
∂u

∂q1
− 4σp1

∂u

∂p1
)

�
. (24)

We note that we can write (6) in the form

Lu + Ru = 0, Ru := {H, u} − Lu. (25)
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In order to construct an inverse of L we consider the Lagrange-Charpit system corre-

sponding to L
dq1

q4σ
1

=
dq2

−2σq2σ−1
1 q2

=
dp1

−4σq4σ−1
1 p1

=
dp2

2σq2σ−1
1 p2

. (26)

We integrate (26) by taking q1 as an independent variable. By simple computations we

can easily see that the solution of (26) is given by

q2 = q0
2 exp

�
q−2σ
1

�
, p2 = p0

2 exp
�
−q−2σ

1

�
, p1 = p0

1q−4σ
1 , (27)

where q0
2 , p0

2 and p0
1 are certain constants.

We note that the solution of the homogeneous equation Lv = 0 is given by

v = φ(p1q
4σ
1 , p2 exp

�
q−2σ
1

�
, q2 exp

�
−q−2σ

1

�
), (28)

with φ(p0
1, p0

2, q0
2) being an arbitrary function of p0

1, p0
2 and q0

2 . We then construct a

solution u of (25) in the form

u =

∞
j=0

uj(q1, p1q
4σ
1 , p2 exp

�
q−2σ
1

�
)
�
exp

�
−q−2σ

1

�
q2

�j
, (29)

where u0(q1, p1q
4σ
1 , p2 exp

�
q−2σ
1

�
) ≡ u0(p1q4σ

1 , p2 exp
�
q−2σ
1

�
). We call (29) the transseries

solution of (25). Then we have

Proposition 1 Let u0(p
0
1, p0

2) be a given analytic function of p0
1 and p0

2 such that

∂u0/∂p0
2 �= 0. Then (3) is formally Liouville-integrable in the sense that (29) is a

formal integral of (3) which is functionally independent of H.

Proof. We note that R in (25) has analytic coefficients and R raises the power of q2
at least by one. On the other hand we have

L
�

uj

�
exp

�
−q−2σ

1

�
q2

�j
�

=
�Luj

	 �
exp

�
−q−2σ

1

�
q2

�j
. (30)

Hence, if we substitute (29) into (25) and compare the coefficients of qj
2 of both sides,

then we have

Luj = ( linear functions of uk and their derivatives (k < j), j = 1, 2, . . . (31)

We note that the right-hand side is a known quantity if we determine uj recursively.

We will solve Lv = f , where

v = v
�
q1, p1q4σ

1 , p2 exp
�
q−2σ
1

��
.

By making the change of variables (q1, p1, p2) �→ (q1, p0
1, p0

2) given by (27), the equation

Lv = f(q1, p1, p2) is written in the form

q4σ
1 (∂v/∂q1) = g(q1, p0

1, p0
2), (32)

where

g ≡ g(q1, p0
1, p0

2) = f(q1, p0
1q−4σ

1 , p0
2 exp

�
−q−2σ

1

�
).
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Hence the solution of (32) is given by

v =

� q1

a0

s−4σg(s, p0
1, p

0
2)ds, (33)

where a0 is an arbitrary complex constant. If we go back to the original variables q1,

p1 and p2, then we obtain a solution of Lv = f . Therefore we have a solution u of (25)

given by (29).

Finally, we will show that u converges, then u is an integral of (3) functionally

independent of H. Hence our Hamiltonian system is formally Liouville-integrable. In-

deed, if this is not the case, then we have u = φ(H) for some smooth function φ of one

variable. If we set q2 = 0, then we obtain

u0

�
p1q4σ

1 , p2 exp
�
q−2σ
1

��
= φ(H)|q2=0 = φ(p1q

4σ
1 ).

This is a contradiction to the assumption that ∂u0/∂p0
2 �= 0. This ends the proof.

5 Convergence of transseries

In this section we consider the Hamiltonian corresponding to r = q2σ
1 +a(q2σ

1 )q2
2 in (2)

H = −2σq2σ−1
1 q2p2(1 + q2

2a′) + p1

�
(q2σ

1 + aq2
2)2 + 2aq2

2

�
, (34)

where we assume a(0) = 1 for the sake of simplicity. We study the convergence of

transseries solutions (29), where we set a0 = 0 in (33). Note that uj(0, p0
1, p0

2) identically

vanishes for any j ≥ 1.

Clearly, the integral u is the solution of (25), where L and R are given, respectively,

by (24) and

Ru = (α̃p1 + β̃p2)
∂u

∂p1
+
�
γ̃p2 + δ̃p1

� ∂u

∂p2
(35)

+ E(q1, q2)
∂u

∂q1
− 2σq2σ−1

1 a′q3
2

∂u

∂q2
,

where

E ≡ E(q1, q2) := aq2
2(aq2

2 + 2q2σ
1 + 2), (36)

α̃ := −4σq2σ−1
1 q2

2(a + a′ + a′q2σ
1 + aa′q2

2), (37)

β̃ := 2σ(2σ − 1)q2q2σ−2
1 (1 + a′q2

2) + 4σ2q4σ−2
1 a′′q3

2 , (38)

γ̃ := 6σq2σ−1
1 a′q2

2 , δ̃ := −4q2a(q2σ
1 + aq2

2 + 1). (39)

Let ε0 be a small positive constant. Then we define

S0 := {q1 ∈ � ; |q1| < ε0} ∩
�

q1 ∈ � ; � q2σ
1 < 0

�
, (40)

where � q2σ
1 denotes the real part of q2σ

1 . Then we have

Theorem 2 Let u0(p0
1, p

0
2) be an analytic function of p0

1 and p0
2 such that ∂u0/∂p0

2 �= 0

in some neighborhood of the origin. Then there exist a δ > 0, an ε0 > 0, neighborhoods

V1, V2 of the origin in � such that u in (29) converges in the domain

{(q1, q2, p1, p2); q1 ∈ S0, p1 ∈ V1, p2 ∈ V2, | exp
�
−q−2σ

1

�
q2| < δ}.
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Proof Let L be given by (24). The Lagrange-Charpit system corresponding to L + R

is given by

dq1

q4σ
1 + E

=
dq2

−2σq2σ−1
1 q2T

=
dp1

(α̃ − 4σq4σ−1
1 )p1 + β̃p2

=
dp2

(2σq2σ−1
1 + γ̃)p2 + δ̃p1

,

(41)

where we set

T ≡ T (q1, q2) := 1 + a′q2
2 . (42)

We integrate (41) by taking q1 ∈ S0 as an independent variable. We want to show that

the solutions are perturbations of the solutions (27) in S0. Namely, we will prove

q2 = q0
2 exp(q−2σ

1 ) exp(q1Q2(q1, q0
2)), (43)

p1 = q−4σ
1

�
p0
1(1 + P1(q1, q0

2)) + p0
2P̃1(q1, q0

2)
�

, (44)

p2 = exp(−q−2σ
1 )

�
p0
1P2(q1, q0

2) + p0
2(1 + P̃2(q1, q0

2))
�

, (45)

for some functions Q2 ≡ Q2(q1, q0
2), Pj ≡ Pj(q1, q0

2) and P̃j ≡ P̃j(q1, q0
2) (j = 1, 2),

which are holomorphic and bounded when q1 ∈ S0 and q0
2 in some neighborhood of

q0
2 = 0. Here p0

1 and p0
2 are arbitrary constants.

In order to verify these properties we first consider the following equation

dq2

dq1
=

−2σq2q2σ−1
1 (1 + a′q2

2)

q4σ
1 + E

=
−2σq2

q2σ+1
1

�
1 +

a′q2
2 − q−4σ

1 E

1 + q−4σ
1 E

�
. (46)

Clearly, q2 = 0 is a solution of (46). We assume q2 �≡ 0. We note that v := q0
2 exp(q−2σ

1 )

satisfies the equation dv/dq1 = −2σvq−2σ−1
1 . We set U := q1Q2, and we substitute

(43) into (46). Then we have

dU

dq1
= − 2σ(a′q2

2 − q−4σ
1 E)

q2σ+1
1 (1 + q−4σ

1 E)
=: f(q1, U), (47)

where q2 = q0
2 exp(q−2σ

1 )eU . Because � q2σ
1 < 0 in S0, we see that f(q1, U) is holomor-

phic when (q1, U) ∈ S0 × Ω, and continuous up to its closure, where Ω is a neighbor-

hood of the origin. Moreover, its maximal norm when (q1, U) ∈ S0 × Ω can be made

arbitrarily small if we shrink S0 sufficiently small.

We will solve (47) in S0. If we replace U with U + c for a constant c we see from

(43) that q0
2 is replaced by ecq0

2 . Hence we may assume that U vanishes at q1 = 0. We

will look for the solution U as the solution of the following equation

U =

� q1

0
f(s, U)ds, (48)

where the integral is taken along the straight line in S0 which connects 0 and q1. We

note that we can make |f(q1, U)| arbitrarily small if we take ε0 in S0 sufficiently small

and U is bounded. We can easily show that the right-hand side operator of (48) is

a contraction mapping on a small ball in the set of functions holomorphic in S0 and

continuous on its closure, and U(0) = 0. Hence we have a holomorphic solution U in

S0 of (48). If we set Q2 := q−1
1 U we obtain the desired solution. The analyticity of U

with respect to q0
2 is easy to verify because of the definition of f .
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Next we study the equations for p1 and p2. It follows from (41) that

dp1

dq1
= αp1 + βp2,

dp2

dq1
= γp2 + δp1, (49)

where

α =
α̃ − 4σq4σ−1

1

q4σ
1 + E

, β =
β̃

q4σ
1 + E

, γ =
2σq2σ−1

1 + γ̃

q4σ
1 + E

, δ =
δ̃

q4σ
1 + E

. (50)

We will construct the solution of (49) in the following form

pν =

∞
j=0

p
(j)
ν , ν = 1, 2, (51)

where

dp
(0)
1

dq1
= αp

(0)
1 ,

dp
(0)
2

dq1
= γp

(0)
2 , (52)

and p
(j)
ν (ν = 1, 2; j = 1, 2, . . . ) are determined by

dp
(j)
1

dq1
= αp

(j)
1 + βp

(j−1)
2 ,

dp
(j)
2

dq1
= γp

(j)
2 + δp

(j−1)
1 . (53)

First we solve (52). By the definition of γ in (50) we have the expression γ =

2σq−2σ−1
1 + γ0, where γ0 is a bounded holomorphic function in S0. By the change of

an unknown function similar in the argument for (46) the solution p
(0)
2 of (52) has the

following expression

p
(0)
2 = p0

2 exp(−q−2σ
1 )(1 + P̃

(0)
2 (q1, q0

2)) (54)

for some P̃
(0)
2 which is bounded and holomorphic in q1 ∈ S0 and q0

2 in some neigh-

borhood of the origin, where p0
2 is an arbitrary constant. Similarly, noting that α =

−4σq−1
1 +α0 for some bounded holomorphic function α0 in S0 we see that the solution

p
(0)
1 of (52) has the following expression

p
(0)
1 = p0

1q−4σ
1 (1 + P̃

(0)
1 (q1, q0

2)) (55)

for some P̃
(0)
1 which is bounded and holomorphic in q1 ∈ S0 and q0

2 in some neighbor-

hood of the origin, where p0
1 is an arbitrary constant.

Now we assume that p
(k)
ν ’s (k = 0, 1, . . . , j−1, ν = 1, 2) are determined. We define

p
(j)
ν by the following relations

p
(j)
1 =

� q1

0
exp

�� q1

s
α(t)dt

�
β(s)p

(j−1)
2 (s)ds, (56)

p
(j)
2 =

� q1

0
exp

�� q1

s
γ(t)dt

�
δ(s)p

(j−1)
1 (s)ds. (57)

Let μ > 4σ− 1 be a given integer. Then we will show the following expressions for p
(j)
ν

p
(j)
1 =

�
p0
1q

−4σ+(μ−2σ)k
1 P

(j)
1 (q1, q0

2) (j = 2k, k = 0, 1, 2, . . . )

p0
2q

−2σ−1+(μ−2σ)k
1 P

(j)
1 (q1, q0

2) (j = 2k + 1, k = 0, 1, 2, . . . )
(58)
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p
(j)
2 =

�
p0
2 exp(−q−2σ

1 )q
(μ−2σ)k
1 P

(j)
2 (q1, q0

2) (j = 2k, k = 0, 1, . . . )

p0
1 exp(−q−2σ

1 )q
−2σ+1+(μ−2σ)(k+1)
1 P

(j)
2 (q1, q0

2) (j = 2k + 1, k = 0, 1, . . . )

(59)

where P
(j)
1 and P

(j)
2 are bounded holomorphic functions of q1 ∈ S0 and q0

2 in some

neighborhood of the origin such that, for some constants C0 > 0 and C1 > 0 and the

neighborhood of the origin U we have

sup
q1∈S0,q0

2∈U

|P (j)
1 (q1, q0

2)| ≤ C0Cj
1 , sup

q1∈S0,q0
2∈U

|P (j)
2 (q1, q0

2)| ≤ C0Cj
1 , j = 0, 1, . . .

(60)

We have already proved (58) and (59) for j = 0. Let j = 1. Since we have α(t) =

−4σt−1 + α0 for some bounded holomorphic function α0 in S0, we have

exp

�� q1

s
αdt

�
= s4σq−4σ

1 (1 + O(s, q1)),

where the term O(s, q1) represents a function holomorphic and bounded in S0. By the

definition of β(s) and (43) we have

β(s) = q0
22σ(2σ − 1) exp(s−2σ)s−2σ−2(1 + O(s)), (61)

where the term O(s) represents the function holomorphic and bounded in S0. Hence

we have

p
(1)
1 (q1) =

� q1

0
s4σq−4σ

1 q0
22σ(2σ − 1)s−2σ−2p0

2(1 + O(s, q1))ds (62)

= q−4σ
1 p0

2q0
22σ(2σ − 1)

� q1

0
s2σ−2(1 + O(s, q1))ds.

The right-hand side of (62) can be written in the form p0
2q−2σ−1

1 P
(1)
2 (q1, q0

2) for some

bounded holomorphic function P
(1)
2 (q1, q0

2) in q1 ∈ S0 and q0
2 in some neighborhood of

the origin. This proves (58) for j = 1.

In order to estimate p
(1)
2 we first note that γ = 2σq−2σ−1

1 (1 + O(q1)). It follows

that

exp

�� q1

s
γ

�
= exp

�
−q−2σ

1 + s−2σ + O(q1, s)
�

. (63)

On the other hand we have

δ(s) =
−4aq2(s

2σ + aq2
2 + 1)

s4σ + E
= −4aq2s−2σ(1 + O(s)), q ∈ S0. (64)

By (43) we have aq2s−2σ−μ = O(s) in S0, it follows that δ(s) = sμO(s), where

μ > 4σ − 1 is a given integer. In terms of the estimate of p
(0)
1 and (57) we have

p
(1)
2 = p0

1

� q1

0
exp

�
−q−2σ

1 + s−2σ
�

sμ−4σO(q1, s)ds = p0
1 exp(−q−2σ

1 )qμ+1−4σ
1 O(q1),

(65)
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where O(q1) is a bounded holomorphic function in S0. This proves (58) and (59) for

j = 0, 1.

Let us now assume that (58) and (59) hold up to some k ≥ 0. We first show (58)

for j = 2(k +1). By (56) with j = 2k +2, (59) with j = 2k +1 and the same argument

as in the estimate of p
(1)
1 we obtain (58) for j = 2(k + 1). Next we show (59) for

j = 2(k + 1). By (57) with j = 2(k + 1), (58) with j = 2k + 1 and the same argument

as in the estimate of p
(1)
2 we obtain (59) with j = 2(k + 1). Next we show (58) with

j = 2(k + 1) + 1. By (56) with j = 2k + 3, (59) with j = 2(k + 1) and the same

argument as for the estimate of p
(1)
1 we obtain (58) with j = 2k +3. To show (59) with

j = 2k + 3 we use (57) with j = 2k + 3, (58) with j = 2k + 2 and the same argument

as for the estimate of p
(1)
2 . Hence we have proved (58) and (59). In order to show the

estimate (60) we note that p
(j)
ν in (56) and (57) are determined by the integral of the

previous ones multiplied by some bounded holomorphic functions in S0. Hence we can

easily show the desired estimates. It follows from (58) and (59) that the series (51)

converges in q1 ∈ S0 and q0
2 in some neighborhood of the origin. Moreover we have the

representations (44) and (45).

Now we construct the solution u of {H, u} = 0 in the form (29) where q0
2 , p0

1 and

p0
2 are given by (43), (44) and (45). For the sake of simplicity we set L̃ := L + R. We

regard q0
2 as the function of q1 and q2 through the relation (43) in view of the implicit

function theorem. In terms of (41) and the implicit function theorem we can easily see

that L̃q0
2 = 0.

Next we prove that L̃p0
ν = 0 (ν = 1, 2). Indeed, by (44) and (45) we can determine

p0
ν as a linear function of p1 and p2, which is also holomorphic in q1 ∈ S0. By applying

L̃ to both sides of (44), we see that the left-hand side is equal to (q4σ
1 +E)(αp1 +βp2).

On the other hand the right-hand side can be written in

q−4σ
1 ((L̃p0

1)(1 + P1) + (L̃p0
2)P̃1) + · · · (66)

where the dots denotes the terms which does not contain the differentiations of p0
ν .

Because L̃q0
2 = 0, if the differentiations of L̃ are applied to q0

2 , then it vanishes. Hence,

in the dotted terms one may consider the differentiations with respect to q1. In view of

the definition of (41) one can show that the dotted term is then equal to the left-hand

side. Therefore we obtain the following

q−4σ
1 ((L̃p0

1)(1 + P1) + (L̃p0
2)P̃1) = 0. (67)

We similarly obtain

exp(−q−2σ
1 )((L̃p0

1)P2 + (L̃p0
2)(1 + P̃2)) = 0. (68)

It follows that L̃p0
ν = 0 (ν = 1, 2).

By (41) we have L̃(uj(q1, p0
1, p0

2)(q
0
2)j) = (L̃uj)(q

0
2)j and

L̃uj = (q4σ
1 + E)∂1uj , (69)

E = (q0
2)2 exp(2q1Q2 + 2q−2σ

1 )a
�
(q0

2)2 exp(2q1Q2 + 2q−2σ
1 )a + 2q2σ

1 + 2
�

,

where the differentiation ∂1 means the one with respect to the first variable by consid-

ering q1, p0
1, p0

2 and q0
2 as the independent variables. Hence we can write L̃ = 0 in the

following form

(q4σ
1 + E)∂1u = 0. (70)
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Because E is an exponentially small when q1 → 0 (q1 ∈ S0), it follows that q4σ
1 + E

does not vanish identically in S0. Hence L̃u = 0 is equivalent to ∂1u = 0.

In order to determine u we study the transformation among two cordinates of

transseries. First we set

q̃0
2 = q2 exp(−q−2σ

1 ), p̃0
1 = p1q

4σ
1 , p̃0

2 = p2 exp(q−2σ
1 ). (71)

Then it follows from (43), (44) and (45) that

q̃0
2 = q0

2 exp(q1Q2), (72)

p̃0
1 = p0

1(1 + P1) + p0
2P̃1, (73)

p̃0
2 = p0

1P2 + p0
2(1 + P̃2). (74)

By (72) and the implicit function theorem we can express q̃0
2 as a holomorphic function

of q0
2 in some neighborhood of the origin, q0

2 = 0 when q1 ∈ S0. Conversely, q0
2 can be

expressed as the holomorphic function of q̃0
2 in some neighborhood of the origin, q̃0

2 = 0

when q1 ∈ S0. We also recall that Q2, Pν , P̃ν are holomorphic functions of q0
2 in some

neighborhood of the origin, q0
2 = 0.

We replace p0
1, p0

2 and q0
2 in (29) with p̃0

1, p̃0
2 and q̃0

2 , respectively and we rewrite

(29) in the following form

u(q1, q̃0
2 , p̃0

1, p̃0
2) =

∞
j=0

ũj(q1, p̃0
1, p̃0

2)(q̃
0
2)j , (75)

where ũ0 is independent of q1 and analytic in some neighborhood of the origin, p̃0
1 = 0,

p̃0
2 = 0. We recall that ũj(0, p̃0

1, p̃0
2) ≡ 0 for every j ≥ 1. We substitute the relations

(72), (73) and (74) into (29) . Then we see that the power series (29) is expressed as

the power series of q0
2 , p0

2 and p0
1

u(q1, q̃0
2 , p̃0

1, p̃0
2) = u0(p0

1, p0
2) + u1(p0

1, p
0
2)q

0
2 + u2(p0

1, p
0
2)(q

0
2)2 + · · · (76)

where we used the relations ∂1uj = ∂q1uj = 0 which follows from the fact that ∂1u = 0.

We first determine u0. In view of the constructions of Pν and P̃ν (ν = 1, 2) we

can easily see that these functions vanish when q0
2 = 0. Moreover, in view of the

construction we can easily see that if we expand Pν and P̃ν (ν = 1, 2) into the power

series of q0
2 the coefficients vanish when q1 → 0. We substitute the relations (72) -

(74) into (75) and we look for terms in ũ0(p̃0
1, p̃0

2) which does not contain q0
2 . We can

easily see that the term is given by ũ0(p
0
1, p0

2). Hence we have u0(p
0
1, p0

2) = ũ0(p
0
1, p0

2).

This shows that u0(p
0
1, p0

2) is analytic at p0
1 = 0, p0

2 = 0. Next we will show that

u1(p
0
1, p0

2) = 0. For this purpose we calculate the limit of the coefficients of q0
2 in (75)

when q1 → 0, where we substitute (72) - (74) into (75). In view of the definitions of Pν

and P̃ν (ν = 1, 2) we can easily see that limq1→0 Pν = 0 and limq1→0 P̃ν = 0. Hence

we have limq1→0 p̃0
1 = p0

1 and limq1→0 p̃0
2 = p0

2. Therefore, if we neglect terms which

vanish when q1 → 0, then we have

u1(p0
1, p

0
2) = lim

q1→0
ũ1(q1, p̃0

1, p̃0
2) = ũ1(0, p0

1, p0
2) ≡ 0. (77)

Similarly we can show that uj(p
0
1, p0

2) ≡ 0 for all j ≥ 1. Therefore the right-hand side

of (76) converges. If we return to the original variables the series (29) converges. This

ends the proof of the theorem.
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Remark. The proof of Theorem 2 also show that if we are given an analytic

solution u = u0(p
0
1, p0

2), then we obtain the solution (29). Indeed, by (72) - (74) we

rewrite u0(p
0
1, p0

2) as an analytic function of q1, p̃0
1 and p̃0

2 in the following form

ũ0(q1, p̃0
1, p̃

0
2) + ũ1(q1, p̃0

1, p̃0
2)q̃

0
2 + · · · (78)

If we consider terms which does not contain q̃0
2 , then we obtain that ũ0(q1, p̃0

1, p̃
0
2) =

u0(p̃
0
1, p̃0

2). Similarly we can show that ũj |q1=0 = 0 for all j ≥ 1. Hence we obtain the

solution (29).

Remark. So far we studied the solvability of Lu+Ru = 0 in a neighborhood of the

point (q1, q2, p1, p2) = (0, 0, 0, 0). We will briefly mention the solvability of Lu+Ru = 0

at other points. As to the solvability at the points (q1, q2, p1, p2) such that q1 �= 0,

q2 = 0, we see that the term q4σ
1 ∂/∂q1 appears in Lu + Ru = 0, which implies that

Lu + Ru = 0 is a nonsingular vector field. Hence, by the standard existence theorem

for the noncharacteristic Cauchy problem, Lu + Ru = 0 is solvable under a suitable

initial condition on u.

By a similar argument, we see that at the point such that q2 �= 0, q1 = 0, p1 �= 0,

either the coefficient of ∂u/∂p2 or that of ∂u/∂q1 does not vanish because a(0) �= 0.

Hence the vector field L + R is nonsingular. At the point such that q2 �= 0, q1 = 0,

p1 = 0 we easily see that if 2+ aq2
2 �= 0, then the coefficient of ∂u/∂q1 does not vanish.

Hence L + R is nonsingular.

Finally, in a neighborhood of the point (q1, q2, p1, p2) such that q1 = 0, q2 = ∞,

Lu+R is nonsingular because a2∂/∂q1 does not vanish. In every case we can construct

a solution by solving a noncharateristic Cauchy problem. Summimg up the above, if

the condition (q1, q2) �= (0, 0) holds, then Lu+Ru = 0 is solvable under an appropriate

intial condition except for some special cases.

6 Asymptotic properties of transseries

In Theorem 2 we proved the solvability of Lu + Ru = 0 by using a transseries solution

near q2 = 0 in some narrow regin near the origin. We want to give a meaning to

formal transseries solutions constructed in §4 by Borel-Laplace resummation method

in a larger region. More precisely we will prove

Theorem 3 Suppose that a ≡ 1 in the equation (L+ R)v = 0. Moreover, assume that

v =

∞

j=0 uj(q1, p0
1, p0

2)(q
0
2)j be the solution of the equation (L + R)v = 0 constructed

in §4 for a polynomial u0 ≡ u0(p
0
1, p0

2) such that ∂u0/∂p0
2 �= 0. Then, for every T0 > 0

there exist ν0 > 0, ε0 > 0 and ε1 > 0 such that, for every ν ≥ ν0 the equation

(L + R)u = 0 has a solution

u =

ν
j=0

uj(q1, p0
1, p0

2)(q
0
2)j + U(q1, p1, p2, q2) (79)

such that U(q1, p1, p2, q2) is holomorphic in the domain

{(q1, q2, p1, p2); | arg q2σ
1 − π| < π/2 + ε0, |q2| < ε1|q2σ

1 |, (80)

|p1| < T0|q4σ
1 exp(−q−2σ

1 )|, |p2| < T0|q4σ
1 exp(−q−2σ

1 )|}.
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In order to prove Theorem 3 we prepare some notation. In terms of the condition

a ≡ 1 R is given by (35) with

E ≡ E(q1, q2) = q2
2(q2

2 + 2q2σ
1 + 2), α̃ = −4σq2σ−1

1 q2
2 , (81)

β̃ = 2σ(2σ − 1)q2q2σ−2
1 , γ̃ = 0, δ̃ = −4q2(q2σ

1 + q2
2 + 1). (82)

Now we make the change of variables

t = q2σ
1 , st = q2. (83)

The Jacobian is nonsingular if q1 �= 0. We can easily see that

q1
∂

∂q1
= 2σ(t

∂

∂t
− s

∂

∂s
), q2

∂

∂q2
= s

∂

∂s
.

Therefore we have

q−2σ+1
1 L = 2σ(p2

∂

∂p2
− s

∂

∂s
) + 2σt(t

∂

∂t
− s

∂

∂s
− 2p1

∂

∂p1
). (84)

In order to calculate q−2σ+1
1 R we note

q−2σ+1
1 E

∂

∂q1
= 2σs2t(s2t2 + 2t + 2)

�
t

∂

∂t
− s

∂

∂s

�
. (85)

Similarly we have q−2σ+1
1 α̃ = −4σs2t2, q−2σ+1

1 β̃ = 2σ(2σ − 1)st1−1/(2σ) and

q−2σ+1
1 δ̃ = −4s(t1+1/(2σ) + s2t2+1/(2σ) + t1/(2σ)). (86)

Hence we have

q−2σ+1
1 R =

�
−4p1σs2t2 + p22σ(2σ − 1)st1−1/(2σ)

� ∂

∂p1
(87)

− 4p1s
�
t1+1/(2σ) + s2t2+1/(2σ) + t1/(2σ)

� ∂

∂p2

+ 2σs2t
�
s2t2 + 2t + 2

��
t

∂

∂t
− s

∂

∂s

�
.

Therefore, by (84) and (87) the equation q−2σ+1
1 (Lv + Rv) = 0 is written in the

following form

2σ

�
p2

∂v

∂p2
− s

∂v

∂s

�
+ 2σt

�
t
∂v

∂t
− s

∂v

∂s
− 2p1

∂v

∂p1

�
(88)

+
�
−4p1σs2t2 + 2σ(2σ − 1)p2t1−1/(2σ)s

� ∂v

∂p1

− 4p1t1/(2σ)(t + s2t2 + 1)s
∂v

∂p2

+ 2σs2t
�
s2t2 + 2t + 2

��
t
∂v

∂t
− s

∂v

∂s

�
= 0.

For the sake of simplicity we write the right-hand side operators of (84) and (87) by L
and R, respectively. Then (88) can be written in Lv + Rv = 0.
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Now we will construct a transseries solution v of (88) by the same method as in §4.

Indeed, we replace the variables q1 and q2 with t and s, respectively. The Lagrange-

Charpit system corresponding to L in the new cordinates is given by

dt

t2
=

ds

−s(1 + t)
=

dp1

−2tp1
=

dp2

p2
. (89)

Hence the transseries solution is given by

v =
∞

j=0

vj(t, p1t2, p2e1/t)(ste−1/t)j , (90)

where v0(t, p
0
1, p0

2), (p0
1 = p1t

2, p0
2 = p2e

1/t) is a given polynomial of p0
1 and p0

2 with

degree N0 ≥ 1 which is independent of t and s. We note that Lv0 = 0. The vj ’s are

given by the formula like (33) which is obtained by inserting (90) into the equation

Lv + Rv = 0 and by equating the coefficients of the powers of s. In order to determine

vj , (j ≥ 1) we impose the initial conditions on vj

vj(a0, p0
1, p0

2) ≡ 0, j = 1, 2, . . . (91)

For ν ≥ 1 we define

w =

ν
j=0

vj(t, p1t
2, p2e1/t)(ste−1/t)j , (92)

and

fν(t, s, p1, p2) := Lw + Rw. (93)

By definition fν(t, s, p1, p2) is a polynomial of s, p1 and p2 and is holomorphic in t in

� \ [0,∞) and satisfies fν(t, s, p1, p2) = O(sν+1), as s → 0.

We define the path γ(π) as follows; Let 0 < θ < π/2 be a number and ρ0 > 0 be

a small number. We start from the origin and go to the point ρ0eiθ along the straight

line. Then we go to the point ρ0e2πi−iθ along the circle with center at the origin and

radius ρ0 counterclockwise. Finally we return to the origin along the straight line. Let

K > 0 be a given constant, and define

Σ := {(t, p1, p2); |p1| < K|t2e−1/t|, |p2| < K|t2e−1/t|, θ ≤ arg t ≤ 2π − θ}. (94)

Then we have

Lemma 1 There exists K > 0 such that the restriction of fν to Σ, fν(t, s, p1, p2)|Σ
is a holomorphic function of t in � \ [0,∞), and it is continuous in t on the path γ(π)

such that limt→0,t∈γ(π) t−2fν(t, s, p1, p2)|Σ = 0.

Proof We note that L preserves the order of s. It follows that Lw cancels with the

corresponding terms in Rw. Because Rw is the polynomial of s with degree ν + 4, it is

sufficient to show that restrictions to Σ of terms of Rw are continuous in t on the path

γ(π), and it has the desired estimate. In view of the definition of R in (87) we have

Rw =


j

(Rvj)(ste
−1/t)j + 2σs2(s2t2 + 2t + 2)


j

jvj(ste
−1/t)j . (95)
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By definition v0 = v0(p1t
2, p2e

1/t) is a polynomial of p0
1 and p0

2. Hence v0 is holomor-

phic in t in the domain � \{0}. If (t, p1, p2) ∈ Σ, then we easily see that limt→0,t∈γ(π) v0|Σ =

0. Let g1(t) be the terms with degree 1 in s of Rw. Because Rw is divisable by s, g1(t)

consists of terms with degree 1 in s of Rv0. It follows that

g1(t) = 2σ(2σ − 1)t1−1/(2σ)sp2
∂v0

∂p1
− 4t1/(2σ)(t + 1)sp1

∂v0

∂p2
. (96)

We can easily see that g1(t) is holomorphic in � \ [0,∞). We want to show that there

exists an ε > 0 such that

lim
t→0,t∈γ(π)

t−2−εg1(t)|Σ = 0. (97)

Indeed, we recall that v0 is a function of p0
1 = p1t

2 and p0
2 = p2e1/t. By (94) we have

that for every ik, jk = 1, 2 (k = 1, 2, . . . , N0) with N0 being the degree of v0 the term

t−2

�
N0�
k=1

pik

∂

∂pjk

�
v0|Σ (98)

is bounded when t → 0, t ∈ γ(π). Hence (97) follows from (96) and (98).

We compare the powers of s in (88) with degree 1. By (89) and the construction of

a transseries solution v1 satisfies

2σt2∂tv1(t, p0
1, p0

2) = t−1e1/tg1(t), (99)

where p0
1 = p1t2 and p0

2 = p2e1/t. By integrating (99) we obtain

v1 = v1(t, p
0
1, p0

2) =
1

2σ

� t

a0

z−3e1/zg1(z)dz, (100)

where a0 �= 0. In case t is close to the origin, then we first integrate from a0 to some

a1 �= 0 on the straight line which connects the origin and t, then we integrate from a1

to t along the straight line.

Next we will show that

lim
t→0,t∈γ(π)

e−1/tv1|Σ = 0. (101)

Because e−1/t tends to zero when t → 0, t ∈ γ(π), the integral from a0 to a1 in the

integral (100) has no contribution when we calculate the limit of v1|Σ as t → 0, t ∈ γ(π).

Hence we consider

e−1/t
� t

a1

z−3e1/zg1(z)dz =

� (1+δ)t

a1

z−3e1/z−1/tg1(z)dz +

� t

(1+δ)t
z−3e1/z−1/tg1(z)dz,

(102)

where δ > 0 is a small positive constant.

We consider the first term in the right-hand side of (102). By setting z = reiμ,

t = ρeiμ, (ρ < r) we have

�(
1

z
− 1

t
) = −(

1

ρ
− 1

r
) cosμ ≤ −(1 − 1

1 + δ
)
1

ρ
cos μ = − δ

1 + δ

1

ρ
cos μ,
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where cos μ > 0. It follows that we have |e1/z−1/tz−3| ≤ K1|t| for some K1 > 0

independent of t when t → 0, t ∈ γ(π). Hence we have�����
� (1+δ)t

a1

z−3e1/z−1/tg1(z)dz

����� ≤
�����
� (1+δ)ρ

|a1|
K1|t||g1(z)|d|z|

����� . (103)

We restrict p1 and p2 to Σ. We note that |p1z2| ≤ |p1||a1|2 < K|t2e−1/t||a1|2 tends to

0. Similarly, |p2e1/z| < K|t2 exp(1/z − 1/t)| ≤ K|t|2 tends to 0. Hence the restriction

to Σ of the right-hand side tends to zero.

Next we will estimate the second term of the right-hand side of (102). Noting that

|e1/z−1/t| ≤ 1 we will consider the integral�����
� ρ

(1+δ)ρ
|z−3g1(z)|d|z|

����� =

�����
� ρ

(1+δ)ρ
|z−1+ε||z−2−εg1(z)|d|z|

����� (104)

≤ max
|t|≤|z|≤(1+δ)|t|

|z−2−εg1(z)|
�����
� ρ

(1+δ)ρ
|z−1+ε|d|z|

����� ,
where ε > 0. By (94) we see that the restriction of the right-hand side of (104) to Σ

tends to zero. This proves (101).

Let g2(t) ≡ g2(t, p
0
1, p0

2) be the terms with degree 2 in s of Rw. Clearly, g2 appears

from R(v0 + v1ste−1/t). We define

v2 =
1

2σ

� t

a0

z−4e2/zg2(z)dz. (105)

Then we will show that

lim
t→0,t∈γ(π)

t2e−2/tv2|Σ = 0. (106)

The terms with degree 2 appearing from Rv0 is given by −4p1σs2t2∂p1v0 + 4σs2(t +

1)t2∂tv0. We consider the second term. We can easily see that the term with the largest

growth in v0 is given by p2e1/t. Hence, in order to show (106) we may study the integral

p2
� t
a1

z−4e3/zdz. Because |p2| ≤ |t2e−1/t| on Σ, the restriction of the integral to Σ

satisfies (106).

We now consider remaining terms g̃2 in g2. We will show that there exists an ε > 0

such that

lim
t→0,t∈γ(π)

t−2−εg̃2(t)|Σ = 0. (107)

Clearly, if we can show this, then we have (107) by the same argument as for v1. By

(98) the term −4p1σs2t2∂p1v0 satisfies the estimate like (107). Next we consider terms

with degree 2 in s appearing from R(v1ste−1/t)�
2σ(2σ − 1)st1−1/2σp2∂p1v1 − 4st1/2σ(t + 1)p1∂p2v1

�
(ste−1/t). (108)

In view of (96) and (100) we see that differentiations in (108) are estimated by

(pi1∂pj1
)(pi2∂pj2

)v0|Σ , i1, i2, j1, j2 = 1, 2. (109)

By (98) we see that t−2 times of the terms in (109) are bounded. Hence we have (107).
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We will show that

lim
t→0,t∈γ(π)

t3e−3/tv3|Σ = 0, (110)

where

v3 =
1

2σ

� t

a0

z−5e3/zg3(z)dz, (111)

where g3(t) consists of terms with degree 3 in s of Rw. Clearly, g3(t) is equal to terms

with degree 3 in s of R(v0 + (tse−1/t)v1 + (tse−1/t)2v2).

First we note that if the terms in g3 satisfies an estimate like g̃2|Σ in (107), then

the similar argument as for v1 or v2 shows that (110) holds. The terms with s3 in Rv0

is given by −4p1s3t2+1/(2σ)(∂v0/∂p2). The restriction of the term to Σ has the similar

estimate like g2(t)|Σ in (107). Next we will consider R((tse−1/t)v1). The terms with s3

appear from (Rv1)(tse
−1/t) and −4σs3(t + 1)te−1/tv1. As to (Rv1)(tse−1/t) we need

to estimate

−4σs3t3e−1/tp1∂p1v1 + 4σs3(t + 1)e−1/tt3∂tv1.

The first term can be estimated by a similar method as in the above. Hence we consider

the second term. Because 2σt2∂tv1 = t−1e1/tg1(t), we see that the second term is equal

to 2s3(t + 1)g1(t). The term has a similar estimate like (107).

Next we consider −4σs3(t + 1)te−1/tv1. In view of (111) we consider the integral

� t

a0

z−4e2/zv1(z)dz =

� t

a0

�
−z−3e2/z − 1

2
(z−2e2/z)′

�
v1(z)dz (112)

= −1

2

� t

a0

(z−2e2/z)′v1(z)dz −
� t

a0

z−3e2/zv1(z)dz.

In order to estimate the first term of the right-hand side we consider

z−2e2/zv1(z)
���t
a0

−
� t

a0

z−2e2/zv′1(z)dz. (113)

By (101) t3e−3/t times the first term of the right-hand side of (113) restricted to Σ

tends to 0 when t → 0, t ∈ γ(π). In order to estimate the second term we consider, by

2σv′1(z) = z−3e1/zg1(z),

1

2σ

� t

a0

z−5e3/zg1(z)dz. (114)

Multiplying the term with t3e−3/t leads to

1

2σ

� t

a0

(t/z)3z−2e3/z−3/tg1(z)dz. (115)

Because one may assume |t/z| ≤ 1, we are lead to the same estimate like (102). Hence

t3e−3/t times the first term of the right-hand side of (112) restricted to Σ tends to 0

when t → 0, t ∈ γ(π). We note that in the second term of the right-hand side of (112)

the negative power in the integrand is improved compared to the left-hand side term by

partial integration. By (101) t3e−3/t times of the restriction to Σ of the second term
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of the right-hand side of (112) tends to zero because |z/t| ≤ 1, | exp(3/z − 3/t)| ≤ 1.

This completes the estimate of R((tse−1/t)v1).

Next we will consider s3 terms in R((tse−1/t)2v2). Clearly we may consider

(tse−1/t)2Rv2. The terms with degree 3 in s are given by

2σ(2σ − 1)e−2/tt3−1/(2σ)s3p2
∂v2

∂p1
− 4t2+1/(2σ)e−2/t(t + 1)s3p1

∂v2

∂p2
. (116)

Inserting the formula of v2 we are lead to the estimate of v0. It is estimated by (98).

Hence we see that R((tse−1/t)2v2) have the estimate like (107). This proves (110).

We proceed by induction and show that for ν = 2, 3, . . . ,

lim
t→0,t∈γ(π)

tνe−ν/tvν |Σ = 0. (117)

Indeed, the estimates of differentiations with respect to pj ’s are reduced to (98). The

differentiations with respect to t are estimated via partial integration and the argument

as for v1, v2 and v3. Moreover, if we denote by gν+1 the terms with degree ν in s in

Lw + Rw, w =

ν

j=0 vj(ste
−1/t)j , then

lim
t→0,t∈γ(π)

t−2−εgν+1(t)|Σ = 0. (118)

As to the terms with degree > ν + 1 in s of Lw + Rw , w =

ν

j=0 vj(ste
−1/t)j we can

estimate the terms by the same argument as for the estimate of gj ’s. This proves the

desired estimate in Lemma 1. This ends the proof.

We use the partial Borel transform with respect to t

g(ζ) ≡ (Bf)(ζ) =
1

2πi

�
γ(π)

tf(t) exp(ζ/t)dt−1, (119)

where ζ is the dual variable of t with respect to the Borel transform.

We assume that f(t) in (119) is analytic in the sectorial domain bounded by γ(π)

and continuous up to the boundary. The inverse Borel transform of g(ζ) is given by

the Laplace integral

(B−1g)(t) = t−1
� ∞(τ)

0
g(ζ) exp(−ζ/t)dζ(= f(t)). (120)

The integration in (120) is taken along the ray which starts from the origin and goes

to infinity in the direction τ which is sufficiently close to π.

We introduce a function space. Let ε0 > 0 be a given small constant and N0 be a

positive integer. We define

Γ0 := {ζ ∈ � ; |ζ| < ε0 or | arg ζ − π| < ε0}. (121)

Let Ω0 and Ω be defined by

Ω0 =
�
(ζ, p1, p2) ∈ �

3 ; ζ ∈ Γ0, |p1| < ε0, |p2| < ε0

�
, (122)

Ω := {s ∈ � ; |s| < ε0} × Ω0. (123)
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We denote by H(Ω) the set of functions w which are polynomials of p1 and p2 with

degree at most N0, holomorphic in Ω and continuous up to the boundary such that

there exist constants c > 0 and K > 0 for which

|w(s, ζ, p1, p2)| ≤ K| exp(c|ζ|)|, ∀(s, ζ, p1, p2) ∈ Ω. (124)

We define the norm ‖w‖ of w as the infimum of K satisfying (124). The space H(Ω)

is a Banach space with the norm ‖ · ‖.
We recall the following formula

B(t2∂tf)(ζ) = ζ(Bf)(ζ) − B(tf)(ζ). (125)

The formula is proved by the direct computations of the Borel transform.

Let λ be a positive number. We denote by αλ ≡ αλ(ζ, D) the Borel transform of

the multiplication operator f(t) �→ tλf(t). Namely, αλ is given by B(tλf) = αλB(f).

Lemma 2 There exists a constant K0 > 0 such that the Borel transform of the oper-

ator f �→ tλf (λ > 0) has the estimate

‖B(tλf)‖ ≤ K0‖B(f)‖, (126)

for every f holomorphic in γ(π) and continuous up to the boundary such that B(f) ∈
H(Ω). Moreover, the constant K0 > 0 can be chosen arbitrarily small if we take c in

(124) sufficiently large.

Proof For the sake of simplicity we write H := H(Ω). We recall that the Borel trans-

form of tλ is equal to ζλ/Γ (1 + λ). Since f̂ := B(f) ∈ H we have the formula

B(tλf)(ζ) =
1

Γ (1 + λ)

d

dζ

� ζ

0
(ζ − η)λf̂(η)dη =

1

Γ (λ)

� ζ

0
(ζ − η)λ−1f̂(η)dη, (127)

where the integral is taken along the straight line in the sector Γ0 which connects the

origin and ζ ∈ Γ0.

We first consider the case 0 < λ < 1. Let θ = arg ζ and ε > 0 be a small number

chosen later. Then the Γ (λ)-times of the right-hand side of (127) can be written in the

following form

� ζ−εeiθ

0
(ζ − η)λ−1f̂(η)dη +

� ζ

ζ−εeiθ

(ζ − η)λ−1f̂(η)dη ≡ I1 + I2. (128)

We estimate I2. By the definition of the integral we have

|I2| ≤
� |ζ|

|ζ|−ε
|ζ − η|λ−1|f̂(η)|d|η| ≤ ‖f̂‖

� |ζ|

|ζ|−ε
(|ζ| − |η|)λ−1ec|η|d|η| (129)

≤ ‖f̂‖ec|ζ|
� |ζ|

|ζ|−ε
(|ζ| − |η|)λ−1d|η| = ‖f̂‖ec|ζ|

� ε

0
sλ−1ds = ‖f̂‖ec|ζ|ελ/λ.

As to I1 we can similarly estimate

|I1| ≤
� |ζ|−ε

0
|ζ − η|λ−1|f̂(η)|d|η| ≤ ‖f̂‖

� |ζ|−ε

0
(|ζ| − |η|)λ−1ec|η|d|η|. (130)
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Because |ζ| − |η| ≥ ε and 0 < λ < 1, we have (|ζ| − |η|)λ−1 ≤ ελ−1. It follows that the

right-hand side of (130) can be estimated by

‖f̂‖ελ−1
� |ζ|−ε

0
ec|η|d|η| ≤ ‖f̂‖ελ

cε
ec|ζ|−cε. (131)

Therefore we have

|B(tλf)(ζ)| ≤ ‖f̂‖ec|ζ|ελ(λ−1 + (cεecε)−1)/Γ (λ). (132)

We take ε > 0 sufficiently small, then c > 0 sufficiently large. We can make the constant

K0 = ελ(λ−1 + (cεecε)−1)/Γ (λ) arbitrarily small. This proves (126).

Next we consider the case λ ≥ 1. We see that Γ (λ)B(tλf)(ζ) is given by the integral

in the right-hand side of (127). By similar calculations as in the case 0 < λ < 1, we see

that it is estimated by

‖f̂‖
� |ζ|

0
(|ζ| − |η|)λ−1ec|η|d|η|. (133)

If λ = 1, then the integral (133) is bounded by ‖f̂‖ec|ζ|/c. In the case λ > 1, by

the partial integration it is equal to

‖f̂‖
��

ecs

c
(|ζ| − s)λ−1

�s=|ζ|

s=0

+
λ − 1

c

� |ζ|

0
(|ζ| − |η|)λ−2ec|η|d|η|

�
(134)

≤ ‖f̂‖
�
−1

c
|ζ|λ−1 +

λ − 1

c

� |ζ|

0
(|ζ| − |η|)λ−2ec|η|d|η|

�

≤ ‖f̂‖λ − 1

c

� |ζ|

0
(|ζ| − |η|)λ−2ec|η|d|η|.

This implies that the estimate of our integral is reduced to that of the same integral

with λ replaced by λ−1. Hence, by the inductive argument we have the same estimate.

This proves the lemma.

Proof (of Theorem 3) Let ν be a positive integer chosen later and define w by (92). Let

u the solution of (88). If we set u = w + v, v = O(sν+1), then v satisfies the equation

Lv + Rv = −Lw − Rw ≡ f, (135)

where f = O(sν+1). Let γ(π) be the path given in Lemma 1. We use the coordinate

(t, s). The function f is holomorphic in � \ [0,∞), continuous on γ(π), and satisfies

f = O(sν+1) by Lemma 1. In order to construct the solution in Σ×{|s| < ε1} we make

the change of the variables p1 = p̃1t2e−1/t, p2 = p̃2t2e−1/t. Clearly, for (t, p1, p2) ∈ Σ

we have |p̃j | < K (j = 1, 2) and vice versa. Then we can easiy verify that pi
∂

∂pj
= p̃i

∂
∂p̃j

for j = 1, 2. It follows that in the equation (88) we may replace pj with p̃j . For the

sake of simplicity we denote the variable p̃j with pj in (88). We note that we may think

that pj moves in some neighborhood of the origin.

We set g := s−ν−1f and V := s−ν−1v. By taking the partial Borel transform with

respect to t, we have

(L̂ − 2σ(1 + α1)(ν + 1))V̂ + R̂V̂ = ĝ, (136)
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where ĝ = B(g), V̂ := B(V ) and

L̂V̂ := 2σ

�
p2

∂

∂p2
− (1 + α1)s

∂

∂s
+ ζ − α1 − 2α1p1

∂

∂p1

�
V̂ ,

R̂V̂ :=
�
−4p1σs2α2 + 2σ(2σ − 1)p2sα1−1/(2σ)

� ∂V̂

∂p1

− 4p1s
�
α1+1/(2σ) + s2α2+1/(2σ) + α1/(2σ)

� ∂V̂

∂p2

+ 2σs2
�
s2α2 + 2α1 + 2

��
ζ − α1

�
1 + s

∂

∂s

��
V̂ .

Here we used the fact that the Borel transform of s2t
�
s2t2 + 2t + 2

��
t∂u

∂t − s∂u
∂s

�
is

given by

s2
�
s2α2 + 2α1 + 2

�
B(t2

∂u

∂t
− st

∂u

∂s
) = s2

�
s2α2 + 2α1 + 2

��
ζ − α1

�
1 + s

∂

∂s

��
û.

We expand ĝ in the power series of s, ĝ =

∞

k=0 ĝk(ζ, p1, p2)s
k and we look for the

solution V̂ of (136) in the form

V̂ =
∞

k=0

V̂k(ζ, p1, p2)s
k. (137)

By inserting these expansions into (136) we have the recurrence formula�
L̂0 − 2σ(ν + 1 + k)(1 + α1)

�
V̂k = ĝk (138)

− 4σα2p1
∂

∂p1
V̂k−2 + 2σ(2σ − 1)α1−1/(2σ)p2

∂

∂p1
V̂k−1

− 4(α1+1/(2σ) + α1/(2σ))p1
∂

∂p2
V̂k−1 − 4α2+1/(2σ)p1

∂

∂p2
V̂k−3

+ 2σα2(ζ − α1(k − 3))V̂k−4 + 4σ(α1 + 1)(ζ − α1(k − 1))V̂k−2,

where k = 0, 1, . . . and

L̂0 = L̂ + 2σ(1 + α1)s
∂

∂s
. (139)

In the following H(Ω0) denotes the set of holomorphic functions w(ζ, p1, p2) being

holomorphic in Ω0 and polynomials of p1 and p2 with degree at most N0. We equip

H(Ω0) with the norm similar to H(Ω). We shall show that there exists ν such that

L̂0 − 2σ(ν + 1 + k)(1 + α1) on H(Ω0) is invertible when k = 0, 1, 2, . . . . Because a

function in H(Ω0) is a polynomial of p1 and p2 with degree at most N0, the operators

pj(∂/∂pj) in L̂0 are bounded continuous operators on H(Ω0). Because the operators

αλ is a bounded continuous operator whose norm can be made arbitrarily small by

Lemma 2, it follows that L̂0 − 2σ(ν + 1 + k)(1 + α1) is invertible for ζ ∈ Γ0 if we take

ν sufficiently large. Moreover, by the Neumann series we can easily show that there

exists K1 > 0 such that, for k = 0, 1, 2, . . . and all ζ ∈ Γ0

‖(L̂0 − 2σ(ν + 1 + k)(1 + α1))
−1‖ ≤ K1

1 + k + |ζ| . (140)
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It follows that if we operate (L̂0−2σ(ν+1+k)(1+α1))−1 to (138), then the right-hand

side terms in (138) are bounded by some constants which can be taken arbitrarily small

if ε0 is sufficiently small for all ζ ∈ Γ0 and k = 0, 1, 2 . . . . It follows that the Vk’s can be

determined recursively from (138) in H(Ω0). Moreover, there exist K2 > 0 and C0 > 0

such that we have the estimate

‖Vk‖ ≤ K2Ck
0 , k = 0, 1, 2, . . . (141)

This proves that the series (137) converges in H(Ω). If we make the partial Laplace

transform with respect to ζ in (136), then we have the solution U as in Theorem 3.

This ends the proof.
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