Mathematische Zeitschrift manuscript No.
(will be inserted by the editor)

Integrability of Hamiltonian systems and transseries
expansions

Werner Balser - Masafumi Yoshino

Received: date / Accepted: date

Abstract This paper studies analytic Liouville-non-integrable and C'°°-Liouville- in-
tegrable Hamiltonian systems with two degrees of freedom. We will show that consid-
erably general Hamiltonians than the one studied in [2] have the property. We also
show that a certain monodromy property of an ordinary differential equation obtained
as a subsystem of a given Hamiltonian and the transseries expansion of a first integral
play an important role in the analysis. In the former half we will show that the an-
alytic Liouville-non-integrability holds for a rather wide class of Hamiltonians under
a certain monodromy condition. For these analytic non integrable Hamiltonians we
cannot construct nonanalytic first integrals concretely as in [2]. In the latter half, we
show the nonanalytic integrability from the viewpoint of a transseries expansion of a
first integral. We will construct a first integral in transseries formally under general
situation. Then we show convergence of transseries or existence of the first integral
which is asymptotically equal to a given formal transseries solution.
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1 Introduction

A Hamiltonian system in n degrees of freedom is said to be C°°-Liouville-integrable
if there are n smooth first integrals in involution which are functionally independent
on an open dense set. If the first integrals are analytic, then we say that it is analytic-
Liouville-integrable. In [2], Gorni and Zampieri showed the existence of a Hamiltonian
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system with two degrees of freedom which is not analytic-Liouville-integrable, while
it is C°°-Liouville-integrable. The geometrical motivation to study such an example
comes from the integrability of a geodesic flows and the Taimanov’s problem. (cf. [2]).
We note that the proof of analytic-nonintegrability relies on the power series expansion
of a first integral, and the C'°°- integrability was proved by constructing concretely a
smooth first integral. (cf. Remark after Corollary 1.) In this paper, we are interested in
the analytical structures which yield nonintegrability in the framework of rather general
Hamiltonians than those in previous works. In fact, we will show that the monodromy
property of a certain subsystem of a given Hamiltonian plays an important role.

For these analytic-nonintegrable Hamiltonians, we cannot construct a nonanalytic
first integral concretely, and instead we make use of a transseries in order to construct
such an integral. An integral in a transseries expansion is constructed via the Lagrange-
Charpit system of a certain vector field obtained by restricting a given Hamiltonian
vector field to an invariant manifold. The construction of a first integral as a formal
transseries is elementary, while the convergence part is complicated due to the degen-
eracy of a given Hamiltonian. We will study the convergence from two different points
of view, transformation of transseries and Borel summability method for transseries.

This paper is organized as follows. In §2 we prove the analytic-Liouville- nonin-
tegrability under the monodromy condition. (Theorem 1). In §3 we give the proof of
Theorem 1. In §4 we prove the transseries expansion of the integrals in a formal sense.
The convergence in a curved region and transformation of transseries are discussed in
§5. In §6 we study the asymptotic property of transseries in terms of Borel summability
method.

2 Analytic nonintegrability

Let 0 > 1 be an integer and let 7(q1, g2, p1, p2) be an analytic function of (q1, g2, p1,p2) €
R?* in some neighborhood of the origin 0 € R* such that

2 2 2 ~ 3
r=7r(q1,q2,p1,02) = qi° +a(qi”)az + 7(q1, 42, p1,P2)45, (1)

where 7(q1, g2, p1,p2) is analytic at the origin and a(t) (¢t = q%”) is a polynomial of ¢
such that a(0) > 0. We are interested in the following analytic Hamiltonian in R* with
two degrees of freedom

H = —q2p20q,7 + (7'2 + q20q, 7") p1, (2)
where Jq, = aiql and Og, = 8%2. The associated Hamiltonian system is given by

@1 =0H/(Op1) = r? + q20¢,7 + (2r0p, 7 + q204, Op, 7)P1 — q2P20p, O, T,

Ggo = OH/(Op2) = —q20q T — q2p20q; OpsT + P1(2r0p, T + q20¢2 OpyT),

) 3
P1 = —OH)(Oa1) = qapad2r — (2rdasr + qaDas Ouat) D1, ®)
P2 = ~0H/(042) = palar + 42204, Ouar — (2004a7 + Dur + 1202,7) 1.

We need a definition in order to state our theorem.



Definition 1 We say that a polynomial a(t) satisfies the monodromy condition (M)
if the following equation has no polynomial solution U ()

20120 — 40U + (1 — 60)tU = (t + 1)a(t). (4)
Then we have

Theorem 1 Assume that a(t) satisfy (M). Then the Hamiltonian system (3) is not
analytic-Liouville-integrable in any neighborhood of the origin. More precisely, for any
analytic first integral v = u(q1,q92,p1,p2) of (3) in R?, there emists a function ¢ of
one-variable, being analytic at 0 € R such that u = ¢ o H.

If a(t) = 1, then we can easily see, from the direct computations or by Lemma 2 of [3]
that (M) is satisfied. Hence we have

Corollary 1 Suppose that o =1, a(t) =1 and ¥ = 0 in (1). Then the Hamiltonian
system (3) is not analytic-Liouville-integrable in any neighborhood of the origin.

Remark. (a) As to the fundamental properties of (M) we refer [3]. In this paper, we
change the terminology for the sake of simplicity. We remark that (M) is a generic
condition.

(b) Theorem 1 is a generalization of [4, Theorem 1], where the function r in (1) was
supposed to be independent of p; and py. Corollary 1 was proved in [2]. In this case,
it is not difficult to see that (3) in Corollary 1 is C'°°-Liouville-integrable, because it
has a smooth first integral

" {qz exp (—1) if (q1,q2) # (0,0),
0 if (q1,¢2) = (0,0).

On the other hand, it is not known whether (3) in a general case has a nonanalytic
first integral because one cannot construct the first integral of (3) concretely since r
also depends on p; and ps2. In §4 we will study the integrability from the viewpoint of
transseries.

()

3 Proof of theorem

The proof of Theorem 1 is done by the argument in [3]. For the sake of completeness
we give the proof.

Proof (of Theorem 2.1) By the suitable change of the variable g2 one may assume that
a(0) = 1. Let u = u(q1, g2, p1,p2) be any analytic first integral of (3). We note that u
is the first integral of the Hamiltonian system (3) if and only if u is a solution of the
following first order equation

ou

{H,u} = (q2p28§1r — (2r0g, 7 + q204; OgoT) pl) 8_]?1 (6)
ou

+ (pz(?qlr + q2p20q, Ogy T — (27"3(127' + Ogor + qzagzr) p1) s

+ (7'2 + q20g, 7 + (210p, 7 + q20¢,9p, )1 — q2P20p, Ogy 7‘) -

1o}
+ (—q20q,7 — q2P20q, Op, ™ + P1(2rOp, 7 + q20g; Op, 7)) 8_:2 =0



We define

v =v(q1,p1,p2) = u(q, 0, p1,p2). (7

By setting g2 = 0 in (6) and noting that dg,7(g1,0) = 0 and r(q1,0) = ¢3° by (1), we
obtain

20 v 20+1 v —0. (8)

We expand v into the power series of pa, v = Z;')io vj (ql,pl)pg. Then we see that
vj(q1,p1) ( =0,1,...) satisfy
Yj

ov; ov;
20 jv; — 4aq%"pla—pl + q%"’“a—qi =0, j=0,1,2,... (9)

We want to show that v; = 0 if j # 0, and v = d)(plqil”) for some analytic func-
tion ¢(t) of one variable. Indeed, by substituting the expansion of v; v;(q1,p1) =
Yoo vj(q1)p} into (9) we obtain

Ov;
20jvj.0 — dovaiTvj, +gi7 T S =0, j=0,1,2,... (10)
q1
If we expand v; ,, into the power series of g1, then we can easily see that v;, = 0 for
ally =0,1,...,if j # 0. Hence we have v; = 0 if j # 0. It follows that v = vg(q1,p1).
Moreover, by (9) v satisfies the equation

f4ap1& + q1& =0.
p1 dq1
If we substitute the expansion of v into the equation, then, by simple computations,
we easily see that v = ¢(p1¢{?) for some analytic function ¢(t) of one variable. This
proves the assertion.
It follows from (2) that v = vy = ¢(p1¢i?) = ¢(H|g,=0). We define

9(q1, q2,p1,p2) := u(q1, g2, p1,p2) — O(H). (11)

By (7) and by recalling that H is a first integral we see that g is an analytic solu-
tion of (6) such that g(q1,0,p1,p2) = 0. In order to prove Theorem 1 we shall show
9(q1, 92, p1,p2) = 0 in some neighborhood of the origin. First we will show that

4 2 7 3
9(q1,q2,p1,p2) = $1(P1a1°” )p2g2 + ha(q1,p1,p2)q2 + h3(q1, a2, p1,P2)a>, (12)

for some analytic function ¢; of one variable and analytic functions hg and hs3. Because
g is analytic we have the expansion

9 7 3
9(q1,92,p1,p2) = 91(q1,p1,p2)q2 + ha(q1,p1,p2)q2 + h3(q1, 92, p1,p2)d5- (13)

We substitute (13) with u = g into (6) and compare the coefficients of g2. By (1) we
have

) ) )
_40'(]%0])18—2 12 (pga—z; — g1> + qf‘f“a—fﬁ =0. (14)



By substituting the expansion g1(qi,p1,P2) = > pmeo 91,m(q1,p1)p5" into (14) and by
comparing the coefficients of p5* we obtain

991, 991
—4aq%ap1 g1,m +20(m —1)g1,m + Q%U-HM =0. (15)

Op1 oq
If m # 1, then we obtain a similar equation as for v; in (9). Hence we have g1 n, = 0
if m # 1. It follows that g1 = g1,1p2, and g1,1 satisfies the equation —4op; dg;il +
ql%g—;l’l = 0. By the same argument as in the above, we see that g1 = g1,1p2 =

$1(p1¢i)pa for some analytic function ¢, of one variable. This proves the assertion.
Let us now suppose that

4 —1 —1
9(q1,q2,p1,p2) = Pn-1(m117 )5~ a3 (16)
7 1
+ hn(q1,p1,02)@5 + hnt1(q1, 92,01, p2) g5+,

for some n > 2, some analytic function ¢,,_1 of one variable and analytic functions
hn(q1,p1,p2) and hypt1(q1, g2, p1,p2). Then we substitute (16) into (6) with u = g and
we compare the coefficients of ¢5. By (1) we have

2p80 (20 — 1)¢y" 2 ¢p—1 — 4a(gi?)(ai” + 1)(n — piphy “én—1 (17)
a5-1_ Ohn 201 (pg% 40 Ohn

—4 —+2 —nh
oq DP1 + 20q; s n n>+q1 o0

=0.
dp1

By substituting the expansion hn(q1,p1,p2) = > roeg hn,m (g1, p1)ph* into (17) and by
comparing the coefficients of p;l*2 we obtain

_ Ohn.n—o
—40q,° 11)1% — 4a(gi?) (7" + 1)(n — 1)p1opn—1 (18)
_ Ohp n—
- 40—‘1%0 1hn,n72 + q%g —gm Z_ 0.
q1
We will show that
hn,n—Z =0, ¢n—1 =0. (19)

If we can prove ¢,_1 = 0, then it follows from (18) that v := hy ,_o satisfies a
similar equation as (9). Hence, by the same argument as for (9) we have hy, n—2 = 0.
In order to show ¢, _1 = 0 we insert the expansions

oo o0
1 k Aok k
Gn1(p1617) = Y bn1 kP17 hnm—2(q1,01) = Y hnn—2k(@)pi  (20)
k=0 k=0

into (18) and we compare the coefficients of p¥. Then we obtain, for k > 0

Ol n—
40—1 20—1 4 n—2,k
M T L MR

= 4a(g?) (@7 + D(n = Vo1 5 14;""

(21)

k—1)
b

where we set ¢,—1,—1 = 0. If we set ¢ = 0 and k =1 in (21), then, by a(0) = 1, we
obtain 0 = 4(n — 1)¢p—1,0, which implies ¢, 1,0 = 0.



Suppose that ¢, 1 # 0 for some k& > 2. We divide both sides of (21) by
¢2° 1. Then the right-hand side of (21) is divisible by ¢i', N = 4o(k — 1) + 1 — 20 >
20 + 1. Because the operator —4okq?® + q%”Jrl(d/dql) in the left-hand side of the
equation increases the power of g1, it follows that h,, ,,_o j is divisible by q{v . We set
hnn—2k(q1) = ¢ W(q1). Then we have q(d/dg1)hpn—21 = af (N + q1(d/dg1))W.
It follows from (21) that W satisfies

(N — 4ak)q%0W —4oW + q%aJrl %

= 4a(gi”)(n — 1)1 51(¢77 +1).

We set W = Z?ial q{Wj (q%"). Because the right-hand side of (22) is a function of
417, W; (1 < j < 20) satisty

(22)

aw;
@7 (N — 4ok + j)W; — 4oW; + g7 Wj =0. (23)
1
By a similar argument as for (9) we have W; = 0 for 1 < j < 20. Hence we have
Wi(q1) = Wo(q??) =: V(t) (t = ¢39). Because q1(d/dq)V = 2ct(d/dt)V, it follows
from (22) that

(1= 60)(V — 4oV + 201&2% = da(t)(n— 1)(t+ Dbn_141.

If we set U := V/(2(n — 1)¢p_1,k—1), then U is an analytic solution of (4). This
contradicts to the assumption of the theorem, because we assume that (M) is not
verified. Hence we have ¢,,_1 1 = 0. Because k is arbitrary we have ¢,_1 = 0.

Next we set ¢p—1 = 0 in (17) and consider the coefficients of p5* (m # n). Then we
see that hn,m satisfies a similar equation as for (9). Hence we have hy m = 0 if n # m,
and hpn.n = én(p1qi®) for some analytic function ¢n of one variable. It follows that
hn(q1,p1,02) = hnn(q1,p1)Ps = én(p1qi®)py. Hence we have (16) with n replaced by
n + 1. By induction we obtain (16) for an arbitrary integer n > 2.

It follows from (16) with n replaced by n + 2 that, for every n > 0 we have
04,9(q1,0,p1,p2) = 0, where (g1, p1,p2) is in some neighborhood of the origin which
may depend on n. On the other hand 93, 9(q1,0, p1, p2) is analytic in some neighborhood
of the origin independent of n. By analytic continuation, we have 0y, g(q1,0, p1,p2)
= 0 in some neighborhood of the origin independent of n. By the partial Taylor ex-
pansion g = >, 97,9(q1,0,p1,p2)g5 /n!, we have g = 0.

4 Transseries expansion of first integral

In this section, we shall construct a first integral of (3) as a transseries. (cf. [1]). In
order to introduce such a series we consider the terms in (6) which preserve the order
of g2

_ ou ou ou ou
Lu = 2"1<2 el BT L0 iy —) 24
U= q] a(p2 opy @ aqg) a1’ (q1 oq ~ lom apl) (24)

We note that we can write (6) in the form

Lu+ Ru=0, Ru:={H,u}— Lu. (25)



In order to construct an inverse of £ we consider the Lagrange-Charpit system corre-
sponding to £

dgy dgo _ dp1 _ dp2
4o 20—1__ — do—1 - 20—1, ° (26)
a0 —20q1" "q2  —40q;° "p1 20¢]° "p2

We integrate (26) by taking g1 as an independent variable. By simple computations we
can easily see that the solution of (26) is given by

_ 0 —20 _.0 —20 _ .0 —4do
q2 = g2 exp (q1 ) , P2 = p3exp (*ql ) . PL=D1q1 (27)

where qg , pg and p(l) are certain constants.
We note that the solution of the homogeneous equation Lv = 0 is given by

v = ¢(p141”, p2 exp (qu") , G2 €Xp (—qIQ")L (28)

with ¢(p(1),p8, qg) being an arbitrary function of p(l), pg and qg . We then construct a
solution u of (25) in the form

o0 .
4 -2 -2 J
w= 3" u;(gr,pat”, prexp (a1°7)) (exp (—ar>7) a2) " (29)
=0

where ug(q1, p1¢17 , p2 exp (qf%)) = ug(p1¢i%, p2 exp (qua)). We call (29) the transseries
solution of (25). Then we have

Proposition 1 Let uo(p?,pg) be a given analytic function of p(l) and pg such that
dug/8pY # 0. Then (3) is formally Liowville-integrable in the sense that (29) is a
formal integral of (3) which is functionally independent of H.

Proof. We note that R in (25) has analytic coefficients and R raises the power of go
at least by one. On the other hand we have

L (uj (exp (—qf%) q2>j> = (Euj) (exp (—qua) qg)j . (30)

Hence, if we substitute (29) into (25) and compare the coefficients of qg of both sides,
then we have

Lu; = ( linear functions of uy and their derivatives (k < j), j=1,2,... (31)

We note that the right-hand side is a known quantity if we determine u; recursively.
We will solve Lv = f, where

40 —20
o= (ot s (577

By making the change of variables (q1, p1,p2) — (q1,p},p3) given by (27), the equation
Lv = f(q1,p1,p2) is written in the form

417 (9v/9q1) = g(q1,pY, p3), (32)

where

_ 0 0 0 —4. 0 -2
9 =9(q1,p1,p2) = flq1,p1a; *,p2€xp (—'h ”))~



Hence the solution of (32) is given by

1
o= [T gt A s, (33)
ag
where ag is an arbitrary complex constant. If we go back to the original variables g1,
p1 and pa, then we obtain a solution of Lv = f. Therefore we have a solution u of (25)
given by (29).

Finally, we will show that u converges, then w is an integral of (3) functionally
independent of H. Hence our Hamiltonian system is formally Liouville-integrable. In-
deed, if this is not the case, then we have u = ¢(H) for some smooth function ¢ of one
variable. If we set g2 = 0, then we obtain

ug (mq‘f",pz exp (QIQU)) = 6(H)|gy—o = 6(p14i”).

This is a contradiction to the assumption that auo/apg # 0. This ends the proof.

5 Convergence of transseries

In this section we consider the Hamiltonian corresponding to 7 = ¢% + a(q3% )¢5 in (2)
20— 2 2 242 2
H=—2001""'gp2(1+g3a’) +p1 ((qf’ +agz)” + 2aqz) ; (34)

where we assume a(0) = 1 for the sake of simplicity. We study the convergence of
transseries solutions (29), where we set ag = 0 in (33). Note that u; (0, py,p9) identically
vanishes for any 7 > 1.

Clearly, the integral u is the solution of (25), where £ and R are given, respectively,
by (24) and

~ ou < ou

Ru = (& —_— y 1) —_— 35
u = (ap1 +ﬁp2)ap1 + (7172 + p1> 99 (35)

Ju 20-1 s 3 Ou

T+ E(q1,q2) 2 — 20 d@
(q1,92) o0 q 2 Baa
where
E = B(q1,2) == ag5(ag3 + 2477 +2), (36)
&= —4oq;” 'g5(a+d +d'qi7 +ad g3), (37)
B =20(20 = V)g2q;” (1 +d'3) + 40°q1" a3, (38)
g = 60q%071a/q%, 5= 74q2a(q%0 + aq% +1). (39)
Let g9 be a small positive constant. Then we define

So:={q1 €C|q1| <eo}nN {q1 e G %q%a < O}, (40)

where R ¢37 denotes the real part of ¢7°. Then we have

Theorem 2 Let ug(pY, p3) be an analytic function of pY and p§ such that dug/dp3 # 0
in some neighborhood of the origin. Then there exist a § > 0, an g9 > 0, neighborhoods
Vi, Vo of the origin in C such that u in (29) converges in the domain

{(q1,92,p1,p2); @1 € So,p1 € Vi,p2 € Va,|exp (—qf%) q2| < 6}



Proof Let L be given by (24). The Lagrange-Charpit system corresponding to £ + R
is given by

dn  _ dqa _ dpy _ dp2
47 +E  —20q} T  (&—40¢;7 p1+PBp2 (20077 +7)p2 + op1
(41)
where we set
T=T(q1,q2) =1+ a'q%. (42)

We integrate (41) by taking g1 € Sp as an independent variable. We want to show that
the solutions are perturbations of the solutions (27) in Sy. Namely, we will prove

%2 = a5 exp(qy >7) exp(q1Q2 (a1, 49)), (43)
p=a (p(f(l + Pi(q1,49)) + p3P1 (g1, qg)) , (44)
p2 = exp(—q; >%) (p(sz(qh @) + P31+ Po(qn, q%))) ; (45)

for some functions Qo = Qg(ql,qg), P = Pj(ql,qg) and ﬁ’j = Pj(ql,qg) (j = 1,2),
which are holomorphic and bounded when g1 € Sp and g5 in some neighborhood of
qg = 0. Here p(l) and pg are arbitrary constants.

In order to verify these properties we first consider the following equation

dgy _ —209247" (1 +a'g3) _ —20q ( a'q3 — q14”E>

dgy 7+ E e 1+¢;%E

(46)

Clearly, g2 = 0 is a solution of (46). We assume g2 Z 0. We note that v := qg exp(ql_%)
satisfies the equation dv/dq; = —20vq1_2‘7_1. We set U := q1Q2, and we substitute
(43) into (46). Then we have

dU _ 20(ae3 — a7 E)
dq q%“"'l(l + q1_4UE)

=: f(q1,U), (47)

where g = ¢ exp(ql_Q")eU. Because R ¢3° < 0 in Sp, we see that f(g1,U) is holomor-
phic when (¢1,U) € Sy x £2, and continuous up to its closure, where {2 is a neighbor-
hood of the origin. Moreover, its maximal norm when (g1,U) € Sp X §2 can be made
arbitrarily small if we shrink Sy sufficiently small.

We will solve (47) in Sp. If we replace U with U + ¢ for a constant ¢ we see from
(43) that qJ is replaced by e°¢. Hence we may assume that U vanishes at ¢; = 0. We
will look for the solution U as the solution of the following equation

1
U= ! f(s,U)ds, (48)
0

where the integral is taken along the straight line in Sp which connects 0 and g;. We
note that we can make |f(q1,U)| arbitrarily small if we take gg in Sp sufficiently small
and U is bounded. We can easily show that the right-hand side operator of (48) is
a contraction mapping on a small ball in the set of functions holomorphic in Sy and
continuous on its closure, and U(0) = 0. Hence we have a holomorphic solution U in
So of (48). If we set Qg := ql_lU we obtain the desired solution. The analyticity of U
with respect to g5 is easy to verify because of the definition of f.



10

Next we study the equations for p; and po. It follows from (41) that

d, d,
PL — apy+ Bpa, 22 = ypy + bp1, (49)
dq1 dq1
where
G- 4(7(1‘11‘7_1 B B QUq%a_l +75 5 B (50)
qila+E I _q‘fa—&—E’fy_ q;lla+E ) —qéllo__i_E
We will construct the solution of (49) in the following form
o0 .
pV = Zpl(/j)7 v= 1525 (51)
7=0
where
0) (0)
dpg (0)  dpy (0)
=apl®, L2 _ , 52
aa 2 dg P2 (52)
and pl(,j) (v=1,2;7=1,2,...) are determined by
dp{” 0, g u-n 5 () 4 50D
— =« + 3 , — = +6p . 53
a 12} i) Qg P3P (53)
First we solve (52). By the definition of v in (50) we have the expression v =
2Uq172"71 + 70, where g is a bounded holomorphic function in Sg. By the change of

an unknown function similar in the argument for (46) the solution péo) of (52) has the
following expression

péo) = pYexp(—q; 27)(1 + 152(0) (q1,43)) (54)
(0)

for some P2 which is bounded and holomorphic in ¢; € Sy and qg in some neigh-
borhood of the origin, where pg is an arbitrary constant. Similarly, noting that o =
—4oq; L+ o for some bounded holomorphic function ag in Sy we see that the solution

pgo) of (52) has the following expression
0 — (0
P =plar (1 + P (a1, 49) (55)

for some ﬁ’l(o) which is bounded and holomorphic in ¢; € Sy and qg in some neighbor-
hood of the origin, where p(l) is an arbitrary constant.

Now we assume that p(yk)’s (k=0,1,...,7—1, v =1,2) are determined. We define

p,(,j ) by the following relations
W _ " " gy
P = [Ten ([ atat) sV (s)ds, %)
G _ (" byt ) 5()p D (s)d
o= e ([ ) sl )as &7
S

Let u > 40 — 1 be a given integer. Then we will show the following expressions for p,(,j )
—4 —20)k j .
W) — {pﬁ)ql THE=2EPD (01,68) (G =2k k=0,1,2,...)
7=

20— 1+ (pu— : . (58)
p3qy 272k pU) (g g0y (= 2k +1,k=0,1,2,...)
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Pl — {pg exp(—q; )qﬁ“2 2“1)kP(])2(q1];q21) (j=2kk=0,1,...)
P exp(—q; 27 )qy 20 THIHROEHED PO (g 00y (j = 2k + 1,k = 0,1,...)

(59)

where Pl(j ) and PQ(j ) are bounded holomorphic functions of ¢; € Sp and qg in some
neighborhood of the origin such that, for some constants Cy > 0 and C7 > 0 and the
neighborhood of the origin U we have

. . . . . o
sup [P (q1,08)| < CoC, sup [P (q1,¢9)| < CoCd, j=0,1,...
q1€8S0,99€U q1€80,q3€U

(60)

We have already proved (58) and (59) for j = 0. Let j = 1. Since we have a(t) =
—4ot~ 4 ag for some bounded holomorphic function ag in Sy, we have

exp (/:1 adt) =" (14 0(s,q1)),

where the term O(s, q1) represents a function holomorphic and bounded in Sp. By the
definition of 3(s) and (43) we have

B(s) = 4320(20 — 1) exp(s~>7)s ™27 *(1+ O(s)), (61)

where the term O(s) represents the function holomorphic and bounded in Sp. Hence
we have

q1
pD(a) = /0 1747 920 (20 — 1)5~ 27" 2pY(1 + O(s, q1))ds (62)

q1

= q1 *p3q920 (20 — 1)/0 s 7214 O(s, q1))ds.

The right-hand side of (62) can be written in the form ;02q1 20 1P( )(ql, ¢3) for some

bounded holomorphic function P2( )(ql, q2) in g1 € Sp and q2 in some neighborhood of
the origin. This proves (58) for j = 1.

In order to estimate pél) we first note that v = 20q; 20=1(1 4+ O(q1)). It follows
that

exp (/Sql ,y> = exp (—ql_Qa +57% 4+ 0(qu, 5)) ) (63)

On the other hand we have

—4aqa(s*7 +aqs +1)
st + F N

5(s) = —dagqes 27 (14 0(s)), q€ So. (64)

By (43) we have agas 2 "* = O(s) in Sp, it follows that d(s) = s*O(s), where
1> 40 — 1 is a given integer. In terms of the estimate of p( ) and (57) we have

q1
pit = p1/ exp (—qu" + 5‘2") s*7170(q1, 8)ds = pi exp(—q; 27 70 (q1),
(65)
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where O(q1) is a bounded holomorphic function in Sy. This proves (58) and (59) for
i =0,1.

’ Let us now assume that (58) and (59) hold up to some k > 0. We first show (58)
for j = 2(k+1). By (56) with j = 2k +2, (59) with j = 2k + 1 and the same argument
as in the estimate of pgl) we obtain (58) for j = 2(k + 1). Next we show (59) for
j=2(k+1). By (57) with j =2(k + 1), (58) with j = 2k + 1 and the same argument
as in the estimate of pél) we obtain (59) with j = 2(k + 1). Next we show (58) with
Jj =2(k+1)+ 1. By (56) with j = 2k + 3, (59) with j = 2(k + 1) and the same
argument as for the estimate of p(ll) we obtain (58) with j = 2k + 3. To show (59) with
j =2k + 3 we use (57) with j = 2k + 3, (58) with j = 2k 4+ 2 and the same argument
as for the estimate of pél). Hence we have proved (58) and (59). In order to show the

estimate (60) we note that pl(,]) in (56) and (57) are determined by the integral of the
previous ones multiplied by some bounded holomorphic functions in Sy. Hence we can
easily show the desired estimates. It follows from (58) and (59) that the series (51)
converges in q; € Sp and qg in some neighborhood of the origin. Moreover we have the
representations (44) and (45).

Now we construct the solution u of {H,u} = 0 in the form (29) where ¢J, p) and
pY are given by (43), (44) and (45). For the sake of simplicity we set £ := £ + R. We
regard qg as the function of g1 and g2 through the relation (43) in view of the implicit
function theorem. In terms of (41) and the implicit function theorem we can easily see
that £q9 = 0.

Next we prove that £p0 = 0 (v = 1,2). Indeed, by (44) and (45) we can determine
p2 as a linear function of p; and ps, which is also holomorphic in ¢; € Sg. By applying
L to both sides of (44), we see that the left-hand side is equal to (¢i + E)(ap1 + 8p2).
On the other hand the right-hand side can be written in

T (Lp) (1 + Py) + (Lp)Pr) + - - (66)

where the dots denotes the terms which does not contain the differentiations of pJ.
Because ﬁqg =0, if the differentiations of £ are applied to qg , then it vanishes. Hence,
in the dotted terms one may consider the differentiations with respect to ¢1. In view of
the definition of (41) one can show that the dotted term is then equal to the left-hand
side. Therefore we obtain the following

a7 (Lp)(1 + Pr) + (£p3) Pr) = 0. (67)
We similarly obtain
exp(—ay 27)((£pY) Pa + (Lp3) (1 + P2)) = 0. (68)

It follows that Lpj, =0 (v = 1,2). _ i ‘
By (41) we have £(u;(q1,p7,p9)(43)7) = (Lu;)(¢3)’ and

Lu; = (q1° + E)duy, (69)
E = (68)” exp(2q1Qs + 247 *7)a ((68)” exp(201Q2 + 247 > )a + 2417 +2)

where the differentiation 9; means the one with respect to the first variable by consid-
ering q1, p(l), pg and qg as the independent variables. Hence we can write £ = 0 in the
following form

(417 + E)dyu = 0. (70)
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Because F is an exponentially small when g1 — 0 (q1 € Sp), it follows that q‘f" + E
does not vanish identically in Sp. Hence Lu=0is equivalent to dju = 0.

In order to determine u we study the transformation among two cordinates of
transseries. First we set

~0 -2 ~0 4 ~0 —2
@ =qexp(—q; 7)., Pi=p1qi°, P2 =p2exp(q ) (71)

Then it follows from (43), (44) and (45) that

B = g5 exp(q1Q2), (72)
P =p(1+ Pr) + pd Py, (73)
79 = pIPa 4+ p3(1 + Py). (74)

By (72) and the implicit function theorem we can express g9 as a holomorphic function
of qg in some neighborhood of the origin,~q8 = 0 when ¢; € Sp. Conversely, qg can be
expressed as the holomorphic function of qg in some neighborhood of the origin, qg =0
when ¢1 € Sy. We also recall that Qo, Py, P, are holomorphic functions of qg in some
neighborhood of the origin, qg =0.

We replace p, pJ and ¢ in (29) with 37, 59 and 3, respectively and we rewrite
(29) in the following form

~0 ~0 -0 ~ -0 ~0 0\J
u(qr,qz,p1,p2) = ) 1;(q1,p1,P2)(49)7, (75)

o

0

J

where g is independent of ¢; and analytic in some neighborhood of the origin, 15(1) =0,
pg = 0. We recall that a; (O,ﬁ?,ﬁg) = 0 for every j > 1. We substitute the relations
(72), (73) and (74) into (29) . Then we see that the power series (29) is expressed as
the power series of qg , pg and p(l)

~0 ~0 -0 0 0 0 0, 0 0 0 0,2
u(q1,q2,P1,P2) = wo(pi,p2) + ui(p1,p2)g2 + u2(pi, p2)(g2)” + - - (76)

where we used the relations 01u; = g, u; = 0 which follows from the f%ct that Oju = 0.

We first determine ug. In view of the constructions of P, and P, (v = 1,2) we
can easily see that these functions vanish when qg = 0. Moreover, in view of the
construction we can easily see that if we expand P, and P, (v = 1,2) into the power
series of g3 the coefficients vanish when ¢ — 0. We substitute the relations (72) -
(74) into (75) and we look for terms in g (pY, p9) which does not contain @. We can
easily see that the term is given by g (pY,p3). Hence we have ug(p,p3) = io(p?, pJ).
This shows that uo(p?,pg) is analytic at p(l) = 0, pg = 0. Next we will show that
u1(pY, p) = 0. For this purpose we calculate the limit of the coefficients of ¢§ in (75)
when q; — 0, where we substitute (72) - (74) into (75). In view of the definitions of P,
and P, (v = 1,2) we can easily see that limg, .o P, = 0 and limg, ¢ P, = 0. Hence
we have limg, ¢ ﬁ(l) = p(l) and limg, . 153 = pg. Therefore, if we neglect terms which
vanish when ¢; — 0, then we have

0 0 . - -0 ~0 ~ 0 0
u1(p1,p2) = qlllgo @1 (q1,P1,P2) = @1(0,p1,p2) = 0. (77)

Similarly we can show that u; (p(l)7 pg) =0 for all j > 1. Therefore the right-hand side
of (76) converges. If we return to the original variables the series (29) converges. This
ends the proof of the theorem.
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Remark. The proof of Theorem 2 also show that if we are given an analytic
solution u = ug(py,pY), then we obtain the solution (29). Indeed, by (72) - (74) we
rewrite ug (p(l), pg) as an analytic function of ¢, ;5(1) and ]58 in the following form

ao(q1, 53, D9) + @1 (q1, DY, 72)G5 + - - - (78)

If we consider terms which does not contain (jg, then we obtain that ﬂo(ql,ﬁ?,ﬁg) =
uo(pY,59). Similarly we can show that Ujlg=0 = 0 for all j > 1. Hence we obtain the
solution (29).

Remark. So far we studied the solvability of Lu+ Ru = 0 in a neighborhood of the
point (g1, g2, p1,p2) = (0,0,0,0). We will briefly mention the solvability of Lu+ Ru = 0
at other points. As to the solvability at the points (q1,q2,p1,p2) such that ¢ # 0,
g2 = 0, we see that the term q‘f"a/aql appears in Lu + Ru = 0, which implies that
Lu + Ru = 0 is a nonsingular vector field. Hence, by the standard existence theorem
for the noncharacteristic Cauchy problem, Lu + Ru = 0 is solvable under a suitable
initial condition on w.

By a similar argument, we see that at the point such that g2 # 0, g1 = 0, p1 # 0,
either the coefficient of du/dps or that of du/dq; does not vanish because a(0) # 0.
Hence the vector field £ 4+ R is nonsingular. At the point such that g2 # 0, g1 = 0,
p1 = 0 we easily see that if 2+ aq% # 0, then the coefficient of du/dq; does not vanish.
Hence £ + R is nonsingular.

Finally, in a neighborhood of the point (q1,¢2,p1,p2) such that g1 = 0, g2 = o0,
Lu+ R is nonsingular because a28/ 0q1 does not vanish. In every case we can construct
a solution by solving a noncharateristic Cauchy problem. Summimg up the above, if
the condition (g1, g2) # (0, 0) holds, then Lu+ Ru = 0 is solvable under an appropriate
intial condition except for some special cases.

6 Asymptotic properties of transseries

In Theorem 2 we proved the solvability of Lu + Ru = 0 by using a transseries solution
near g2 = 0 in some narrow regin near the origin. We want to give a meaning to
formal transseries solutions constructed in §4 by Borel-Laplace resummation method
in a larger region. More precisely we will prove

Theorem 3 Suppose that a =1 in the equation (L+ R)v = 0. Moreover, assume that
v = Z;')io uj (q1,29,99)(49)? be the solution of the equation (L + R)v =0 constructed

in §4 for a polynomial ug = ug(p,p3) such that dug/dp3 # 0. Then, for every Ty > 0
there exist vy > 0, g > 0 and €1 > 0 such that, for every v > vg the equation
(L+ R)u=0 has a solution

14
u= ZUJ(Q17P(1)7pg)(qg)j +U(‘117P17P27(I2) (79)
=0

such that U(q1,p1,Pp2,q2) is holomorphic in the domain

2 2
{(q1,92,p1,p2); larg 1° — 7| < /2 + €0, lq2| < e1l1”], (80)
Ip1] < Tola1” exp(—qi >%)|, Ip2| < Tolqi” exp(—q; >7)[}.
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In order to prove Theorem 3 we prepare some notation. In terms of the condition
a =1 R is given by (35) with

E=E(q,%) =3 +24° +2), a=—40¢" '3, (81)
B=20020—1)gq> 2 5=0, §=—4¢(¢" +¢3+1). (82)

Now we make the change of variables
t= q%a, st = qo. (83)

The Jacobian is nonsingular if ¢; # 0. We can easily see that

0 0 0 0 0
N oq ot "as” Poag ~ °bs
Therefore we have
—20+1 0 0 0 0 1o}
= 20 (pr - — 5 2) 4 20t(t2 — 52— 2p1 ). 4
T L U(pzam s55) T 20t — 5o plapl) (84)

In order to calculate g} 2041 R we note

20414, O 2,, 2,2 13} o}
E— =2 2 2 — —s— .
aQ o0 os t(s“t" + 2t + 2) (tat S&s) (85)

Similarly we have q;20+1& = —4os*t?, q;20+15 =20(20 - DStl_l/(%) and
gT201E = 45T/ (R0) | 2241/ (20) 4 41/(20)y (86)

Hence we have

T R= (—4p1052t2 + p220(20 — 1)5'51_1/(20)) 2 (87)

9p1
~ dpys (t1+1/(2”)+32t2+1/(2") +t1/(2">) aim

2,( 2,2 d 0
+ 20s t(s t +2t—|—2) <tat—588>.

Therefore, by (84) and (87) the equation qf2”+1(£v + Rv) = 0 is written in the
following form

20 <p288—:2 — s%) + 20t (t% — s% —2p1 %) (88)
+ (—4p1052t2 +20(20 — 1)p2t1‘1/(2")s) 5—;
— 4t P (1 4 2 1)35—:2
+ 2053 (32t2 rot 2) (t% - s%) —0.

For the sake of simplicity we write the right-hand side operators of (84) and (87) by £
and R, respectively. Then (88) can be written in Lv + Rv = 0.
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Now we will construct a transseries solution v of (88) by the same method as in §4.
Indeed, we replace the variables ¢q; and g2 with ¢ and s, respectively. The Lagrange-
Charpit system corresponding to £ in the new cordinates is given by

¢ ds dp1 dp2

—_— = = = —. 89
2 —s(l4+t) —2tp1  p2 (89)
Hence the transseries solution is given by
> .
v=""wj(t,p1t®, poe’ ") (ste 7Y, (90)

=0

where vo(t,p?,pg), (p(l) = p1t2, pg = pgel/t) is a given polynomial of p(l) and pg with
degree No > 1 which is independent of ¢ and s. We note that Lvg = 0. The v;’s are
given by the formula like (33) which is obtained by inserting (90) into the equation
Lv+ Rv =0 and by equating the coefficients of the powers of s. In order to determine
vj, (j > 1) we impose the initial conditions on v;

Uj(a07p(1)7p8)50, j=12,... (91)
For v > 1 we define
d .
w =" v;(t,prt?, pae’/ ") (ste” Y, (92)
=0
and
fu(t,s,p1,p2) == Lw + Ruw. (93)

By definition fu (¢, s,p1,p2) is a polynomial of s, p; and p2 and is holomorphic in ¢ in
C\ [0,00) and satisfies fu(t,s,p1,p2) = O(s”+1), as s — 0.

We define the path y(m) as follows; Let 0 < 6 < 7/2 be a number and pg > 0 be
a small number. We start from the origin and go to the point poeie along the straight
line. Then we go to the point poe%i_w along the circle with center at the origin and
radius pg counterclockwise. Finally we return to the origin along the straight line. Let
K > 0 be a given constant, and define

5= {(t,p1,p2); Im| < K|t2e™1), |po| < K|t2e ™V, 0 < argt <27 — 0}, (94)
Then we have

Lemma 1 There exists K > 0 such that the restriction of fu to X, fu(t,s,p1,p2)|s
is a holomorphic function of t in C\ [0,00), and it is continuous in t on the path ()
such that limy o ¢cy(r) t=2f,(t, s, p1,p2)|x = 0.

Proof We note that £ preserves the order of s. It follows that Lw cancels with the
corresponding terms in Rw. Because Rw is the polynomial of s with degree v + 4, it is
sufficient to show that restrictions to X' of terms of Rw are continuous in ¢ on the path
~(m), and it has the desired estimate. In view of the definition of R in (87) we have

Rw =" (Rvj)(ste /") +205%(s*¢* + 2t +2) > jvj (ste™ /). (95)
J J
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By definition vy = vg(p1£2, poet/ %) is a polynomial of pJ and pY. Hence vy is holomor-
phic in ¢ in the domain C\{0}. If (, p1, p2) € ¥, then we easily see that lim; ¢ ;e (x) V0|2 =
0. Let g1(t) be the terms with degree 1 in s of Rw. Because Rw is divisable by s, g1(t)
consists of terms with degree 1 in s of Rug. It follows that

ovg

O .1/(20) g
4t/ ) 1 4 1) 0. (96)

91(t) = 20(20 — 1)1L/171/(20)=9102a—p1

We can easily see that g1 (¢) is holomorphic in C \ [0, 00). We want to show that there
exists an € > 0 such that

—2

lim t " °q1(t)|x=0. (97)

t—0,tev(m)

Indeed, we recall that vg is a function of p = p1t> and p9 = pae'/t. By (94) we have
that for every ig,jr = 1,2 (k=1,2,..., Ng) with Ny being the degree of vg the term

N,
t? ﬁpiki vo| o (98)
i P

is bounded when t — 0,¢ € (7). Hence (97) follows from (96) and (98).
We compare the powers of s in (88) with degree 1. By (89) and the construction of
a transseries solution v satisfies

20’t28t1}1 (tzp(l)vpg) = t_lel/tgl(t)v (99)

where p(l) = p1t? and pg = pgel/t. By integrating (99) we obtain

1 [t
v1 = v1(t,p,p9) = %/ 2% g1 (2)dz, (100)
ao

where ag # 0. In case t is close to the origin, then we first integrate from ag to some
a1 # 0 on the straight line which connects the origin and ¢, then we integrate from a;
to t along the straight line.

Next we will show that

lim e Yy |x =0. (101)
t—0,tevy(m)

Because ¢!/t tends to zero when t — 0,t € v(m), the integral from ag to a; in the
integral (100) has no contribution when we calculate the limit of vy |g ast — 0,¢ € ().
Hence we consider

t (1+8)t t
eI/t / z_gel/zgl (2)dz = / 2_361/2_1/t91 (z)dz + / z_3el/z_1/tgl(z)dz,
ay ay (1+6)t
(102)

where § > 0 is a small positive constant. ‘
We consider the first term in the right-hand side of (102). By setting z = re**,
t = pe**, (p <) we have

)
1 1 6 1
RC % B T40p

S|

) =—( )COSFLS*O*%)[—I)COszf

1+

=
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where cospu > 0. It follows that we have |el/Z71/t273| < Kjlt| for some K1 > 0
independent of ¢ when ¢t — 0,¢ € (). Hence we have

(148)p
/| K ltllg1(2)1dl2]

ay

(1+8)t
/ z_gel/z_l/tgl (2)dz| < . (103)

1

We restrict p; and ps to X. We note that |p1z2| < |;01Ha1|2 < K|t2€_1/t|\a1|2 tends to

0. Similarly, |pgel/z| < K|t? exp(1/z — 1/t)| < K|t|? tends to 0. Hence the restriction
to X of the right-hand side tends to zero.

Next we will estimate the second term of the right-hand side of (102). Noting that
1/2=1/t) < 1 we will consider the integral

P —3
/ =% g1(2)ld]z]
(1+96)p

P
2220 (2)] / =2
(1+8)p

le

(104)

P
- ‘ /( S CaaTOTE
p

< max
[t]<|z|<(146)]¢]

where € > 0. By (94) we see that the restriction of the right-hand side of (104) to X
tends to zero. This proves (101).

Let g2(t) = g2 (t,p(l),pg) be the terms with degree 2 in s of Rw. Clearly, go appears
from R(vg + Ulste_l/t). We define

1ot
vy = 5= /ao z 462/Zgg(z)dz. (105)
Then we will show that
lim  t2e” Y tuy|s = 0. (106)
t—0,t€y(m)

The terms with degree 2 appearing from Ruvg is given by 74p1082t28p1v0 + 4052(t +
1)t28tv0. We consider the second term. We can easily see that the term with the largest
growth in v is given by pae'/t. Hence, in order to show (106) we may study the integral
D2 fol 2~%e%/%dz. Because Ip2] < |t2€_1/t| on X, the restriction of the integral to X
satisfies (106).

We now consider remaining terms gz in go. We will show that there exists an & > 0
such that

lim ¢ 2 %Ge(t)|x = 0. (107)
t—0,tevy(m)

Clearly, if we can show this, then we have (107) by the same argument as for v;. By
(98) the term —4p;0s2t20p, vy satisfies the estimate like (107). Next we consider terms
with degree 2 in s appearing from R(vy stefl/t)

(20(20 — 1)st1_1/20p28p1v1 — 4stt/% (t+ 1)p10p, vl) (ste_l/t). (108)
In view of (96) and (100) we see that differentiations in (108) are estimated by
(pil apjl )(pi2ap]'2 )’UO|2, ila 127 j13j2 = 15 2 (109)

By (98) we see that ¢~ 2 times of the terms in (109) are bounded. Hence we have (107).
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‘We will show that

lim 3¢ 3 tyg| 5 =0, (110)
t—0,tevy(m)
where
1" 53
v3 = oo /ao 2z e 7 g3(2)dz, (111)

where g3(t) consists of terms with degree 3 in s of Rw. Clearly, g3(t) is equal to terms
with degree 3 in s of R(vg + (tsefl/t)vl + (tsefl/t)2v2).

First we note that if the terms in g3 satisfies an estimate like g2|x in (107), then
the similar argument as for v; or vy shows that (110) holds. The terms with s in Rug
is given by —4p;s°¢2T1/(29) (Ovg/0p2). The restriction of the term to X has the similar
estimate like g2(t)| s in (107). Next we will consider R((tsefl/t)vl). The terms with s
appear from (va)(tsefl/t) and —40s>(t + l)tefl/tvl. As to (va)(tsefl/t) we need
to estimate

—4053t3e_1/tp10p1v1 + 4033(15 + 1)6_1/tt38t1}1.

The first term can be estimated by a similar method as in the above. Hence we consider
the second term. Because 20t28tvl = tilel/tgl (t), we see that the second term is equal
to 2s3(t 4+ 1)g1(t). The term has a similar estimate like (107).

Next we consider —40s3(t + 1)te_1/t111. In view of (111) we consider the integral

t t
/ 24P Py (2)dz = / (—z_SeQ/Z - %(2_262/2)I> v1(z)dz (112)
ao

ao

¢ t
= 7%/ (27262/Z)/’01(Z)d27/ zfjeQ/Zvl(z)dz.
ao

ag
In order to estimate the first term of the right-hand side we consider

t
22627y, (2)

t
- / Z_QeQ/Zvll(z)dz. (113)
ao ap
By (101) t3¢ 3/ times the first term of the right-hand side of (113) restricted to X
tends to 0 when ¢t — 0,¢ € y(m). In order to estimate the second term we consider, by
200] (2) = 23l % gy (2),

t -
% /ao 27563/291(2)612. (114)
Multiplying the term with t3e 73/t Jeads to
t
L[ 4)2)37263/273/ g (2. (115)
20 Jq,

Because one may assume |t/z| < 1, we are lead to the same estimate like (102). Hence
373/ times the first term of the right-hand side of (112) restricted to X tends to 0
when t — 0,t € y(7). We note that in the second term of the right-hand side of (112)
the negative power in the integrand is improved compared to the left-hand side term by
partial integration. By (101) 373/t times of the restriction to X of the second term



20

of the right-hand side of (112) tends to zero because |z/t| < 1, |exp(3/z — 3/t)| < 1.
This completes the estimate of R((tse_l/t)vl).
Next we will consider s® terms in R((tse™'/*)%vy). Clearly we may consider
(tse_l/t)QRvg. The terms with degree 3 in s are given by
20(20 — 1)e 2/ 43 1/@0) 3y, OV2 241/ (0) =2/t | 4y 3, 02 (116)
Op1 Op2
Inserting the formula of vg we are lead to the estimate of vg. It is estimated by (98).

Hence we see that R((tsefl/t)2v2) have the estimate like (107). This proves (110).
We proceed by induction and show that for v =2,3,...,

lim e "ty |x =0. (117)

t—0,tEy(m)
Indeed, the estimates of differentiations with respect to p;’s are reduced to (98). The
differentiations with respect to ¢ are estimated via partial integration and the argument

as for vy, v and vz. Moreover, if we denote by g,+1 the terms with degree v in s in
Lw+ Rw, w=37_ vj(ste™1/t) | then

lim 2 g1 ()]s = 0. (118)
t—0,tevy(m)

As to the terms with degree > v+ 1 in s of Lw+ Rw , w = Z;’:O Uj(ste_l/t)j we can
estimate the terms by the same argument as for the estimate of g;’s. This proves the
desired estimate in Lemma 1. This ends the proof.

We use the partial Borel transform with respect to ¢

1

" 2mi

a(Q) = BN / L H@esc/na (119)
y(m

where ( is the dual variable of ¢ with respect to the Borel transform.

We assume that f(¢) in (119) is analytic in the sectorial domain bounded by ~y(m)
and continuous up to the boundary. The inverse Borel transform of g(¢) is given by
the Laplace integral

oo(T)
(B~ 1g)(t) =t~ /O 9(C) exp(—C /(= f(2). (120)

The integration in (120) is taken along the ray which starts from the origin and goes
to infinity in the direction 7 which is sufficiently close to .

We introduce a function space. Let €9 > 0 be a given small constant and Ny be a
positive integer. We define

In:={CeC|¢|<eg or |arg ( — 7| <ep}- (121)

Let 29 and (2 be defined by

20 = {(¢p1,p2) € €5 € o, | < o, Ip2l < 20}, (122)

2:={seC|s| <ep} x 2. (123)
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We denote by H({2) the set of functions w which are polynomials of p; and pa with
degree at most Np, holomorphic in {2 and continuous up to the boundary such that
there exist constants ¢ > 0 and K > 0 for which

lw(s, ¢ p1,p2)| < Klexp(c[C])],  V(s,( p1,p2) € 2. (124)

We define the norm |Jw|| of w as the infimum of K satisfying (124). The space H({2)
is a Banach space with the norm || - ||.
We recall the following formula

B(0:£)(C) = C(BF)(C) — BEL)(C). (125)

The formula is proved by the direct computations of the Borel transform.
Let A be a positive number. We denote by a) = a) (¢, D) the Borel transform of
the multiplication operator f(t) — t’\f(t). Namely, a is given by B(t’\f) = a)B(f).

Lemma 2 There exists a constant Ky > 0 such that the Borel transform of the oper-
ator f — t*f (X > 0) has the estimate

1B )| < Kol B(f), (126)

for every f holomorphic in v(w) and continuous up to the boundary such that B(f) €
H($2). Moreover, the constant Ko > 0 can be chosen arbitrarily small if we take c in
(124) sufficiently large.

Proof For the sake of simplicity we write H := H({2). We recall that the Borel trans-
form of ¢* is equal to ¢*/I'(1+ \). Since f := B(f) € H we have the formula

¢ . ¢ .
BN©) = mrmyac [, €~ Fn = 555 [€= 0 fan,2m)

where the integral is taken along the straight line in the sector Iy which connects the
origin and ¢ € Ig.

We first consider the case 0 < A < 1. Let § = arg( and £ > 0 be a small number
chosen later. Then the I"(\)-times of the right-hand side of (127) can be written in the
following form

Ceet? A-1p ¢ A-13
L i [T o o =ne 029
eei
We estimate 2. By the definition of the integral we have

< . ~ 1q
Io| < / ¢ =l F)ldnl < I1f (¢l = ) eldpn (129
[Cl—e I¢|—e

R <] - ) < )
< |1 ffecle! . (¢ = )t djn| = || llecl! /0 s s = || fllel¢le? /.
—E&

As to I1 we can similarly estimate

[¢]—¢ N N [{l—¢
L) < /0 ¢ —n* " Fm)ldlnl < |1 £l /0 (1¢] = ) teapm). (130)
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Because |¢| — || > € and 0 < A < 1, we have (|¢| — [n[)* ™! < e*~ L. It follows that the
right-hand side of (130) can be estimated by

R [{l—¢ Al A
A1 [ el < M tel=es (131)
Therefore we have
B F)(O] < 1F1leIeX AT 4 (eee) ™ /T (). (132)

We take € > 0 sufficiently small, then ¢ > 0 sufficiently large. We can make the constant
Ko = (A1 + (cee®®)™1)/I'(\) arbitrarily small. This proves (126).

Next we consider the case A > 1. We see that I'(A\)B(t f)(¢) is given by the integral
in the right-hand side of (127). By similar calculations as in the case 0 < A < 1, we see
that it is estimated by

. [<]
17 /0 (1€l = D)2l ). (133)

If A = 1, then the integral (133) is bounded by ||f||ec|<‘/c. In the case A > 1, by
the partial integration it is equal to

R eCs s=[¢| _ q
||f||([7<|<|—s>*1] s (|<|—|n|>”e0'"d|n|) (134)

S= c

. _ 1§
<1l (—%m“ + 22 [Taal- IUI)A_zecl"dlnl)

C

~A—1 sl 9 e
IR [0 = a2 .

This implies that the estimate of our integral is reduced to that of the same integral
with A replaced by A —1. Hence, by the inductive argument we have the same estimate.
This proves the lemma.

Proof (of Theorem 3) Let v be a positive integer chosen later and define w by (92). Let
u the solution of (88). If we set u = w + v, v = O(s” 1), then v satisfies the equation

Lv+ Rv=—Lw— Rw = f, (135)

where f = O(s**1). Let v(x) be the path given in Lemma 1. We use the coordinate
(t,s). The function f is holomorphic in C \ [0, 00), continuous on 7(7), and satisfies
f=0(s""1) by Lemma 1. In order to construct the solution in X x {|s| < €1} we make
the change of the variables p; = p1t2e /%, po = pot2e1/t. Clearly, for (t,p1,p2) € X
we have |p;| < K (j = 1,2) and vice versa. Then we can easiy verify that piaipj = ﬁiW%
for j = 1,2. It follows that in the equation (88) we may replace p; with p;. For the
sake of simplicity we denote the variable p; with p; in (88). We note that we may think
that p; moves in some neighborhood of the origin.

We set g := s V! f and V := s¥lv. By taking the partial Borel transform with
respect to t, we have

(£ —20(1+a1)(v+1))V+RV =g, (136)
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PN 15} 1o} 0\ -~
LV =20 (pQB_pQ -1 —|—o¢1)s% +(—a1 — 2a1p18_m> Vv,
v

dp1

ov

Op2

+ 205> (s2a2 + 2aq1 + 2) (Q —aq <1 + 3£>> V.
Js

Here we used the fact that the Borel transform of st (s2t2 + 2t + 2) (t%— 5‘3?) is
given by

15} 0 0
52 (52a2 + 2071 + 2) B(t28—1: — ta—Z) 52 (52a2 +2a71 + 2) (C — a1 (1 + s$>> a.

RV = (74p1052a2 +20(20 — 1)?2““1—1/(20))

— 4p1s (Oé1+1/(za) + 8202+1/(20) + al/(20)>

We expand § in the power series of s, § = > peq (¢, p1, p2)s” and we look for the
solution V' of (136) in the form

V= ka ,P1,P2)s" (137)

By inserting these expansions into (136) we have the recurrence formula

(ﬁo 20w+ 1+k)(1+ al)) Vi = i (138)

0 » 0
- 40’0{2])1 a—prk,Q + 20'(20' — 1)&1_1/(20.)])28—1)1‘/]6,1

9] o}
— Hat1/(20) T 21/(20) P15~ s V-1 *4062+1/(20)p1 Vk 3
+ 20a2(¢ — ar(k — 3))Vie—sg + 4o (a1 + 1)(¢ — ar(k — ))kam

where kK =0,1,... and

Loy :[:+2U(1+a1)s%. (139)
In the following H({2y) denotes the set of holomorphic functions w((,p1,p2) being
holomorphic in 2y and polynomials of p; and ps with degree at most Ng. We equip
H(£20) with the norm similar to H(f2). We shall show that there exists v such that
Lo —20(v+1+k)(1+ ai) on H(f2) is invertible when k = 0,1,2,.... Because a
function in H(f2g) is a polynomial of p; and py with degree at most Ny, the operators
pj(0/0p;) in Lo are bounded continuous operators on H({2). Because the operators
a) is a bounded continuous operator whose norm can be made arbitrarily small by
Lemma 2, it follows that £o — 20(v + 1 + k)(1 4+ o) is invertible for ¢ € I if we take
v sufficiently large. Moreover, by the Neumann series we can easily show that there
exists K7 > 0 such that, for k =0,1,2,... and all { € I

K

4 1
(Lo—20(v+1+k)(1+a)) || < m

(140)
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It follows that if we operate (£o—20(v+1+k)(1+a1)) ! to (138), then the right-hand
side terms in (138) are bounded by some constants which can be taken arbitrarily small
if ¢ is sufficiently small for all { € Iy and k =0,1,2.... It follows that the V}’s can be
determined recursively from (138) in H({2y). Moreover, there exist Ko > 0 and Cp > 0
such that we have the estimate

Vil < K2C,  k=0,1,2,... (141)

This proves that the series (137) converges in H({2). If we make the partial Laplace
transform with respect to ¢ in (136), then we have the solution U as in Theorem 3.
This ends the proof.
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