

Exercise Sheet 3

Applied Analysis

Discussion on Thursday 7-11-2013 at 16ct

Exercise 1 (Some special series)

(a) Prove that the following series converges for |q| < 1

$\sum_{k=0}^{\infty} q^k$

and show the equality

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}.$$

Hint: Use the well-known formula for the geometric sum.

(b) Show that the series

$$\sum_{k=1}^{\infty} \frac{1}{k}$$

does not converge. Hint: Prove the following inequality

$$\sum_{k=2}^{2^n} \frac{1}{k} \ge \sum_{j=1}^n \sum_{i=2^{j-1}+1}^{2^j} \frac{1}{2^j} = \frac{n}{2}$$

Exercise 2 (*Three norms in* \mathbb{R}^2)

On \mathbb{R}^2 we can define three different norms by

$$\|(x,y)\|_1 = |x| + |y|, \ \|(x,y)\|_{\infty} = \max\{|x|,|y|\}, \ \|(x,y)\|_2 = \sqrt{x^2 + y^2}$$

for $(x, y) \in \mathbb{R}^2$.

- (a) Draw a picture of the unit balls for the norms $\|\cdot\|_2$, $\|\cdot\|_1$, and $\|\cdot\|_{\infty}$.
- (b) Find constants $c_1, c_2, c_3 > 0$ such that

$$\|v\|_1 \le c_1 \|v\|_2 \le c_2 \|v\|_{\infty} \le c_3 \|v\|_1$$

holds for all $v \in \mathbb{R}^2$.

- (c) Show that for a sequence $((x_n, y_n))_{n \in \mathbb{N}}$ in \mathbb{R}^2 and $(x, y) \in \mathbb{R}^2$ the following statements are equivalent:
 - i. $((x_n,y_n))_{n\in\mathbb{N}}$ converges in one of the three norms to (x,y).
 - ii. $((x_n, y_n))_{n \in \mathbb{N}}$ converges in all of the three norms to (x, y).
 - iii. $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ are convergent sequences to x respectively y in \mathbb{R} with the usual Euclidean metric.

Exercise 3 (Accumulation points)

(a) Calculate all accumulation points (an accumulation point is by definition the limit point of a subsequence) of the sequence $(x_n)_{n \in \mathbb{N}}$ with

$$x_n = (-1)^n + \frac{1}{n}.$$

please turn over!

(5+5)

(2+3+3+2)

 $(5+5^*)$

(b*) Find a sequence $(x_n)_{n \in \mathbb{N}}$ with uncountably many accumulation points.

Exercise 4 (*Existence of minimum and maximum*) Show that the function $f: [0,1]^2 \to \mathbb{R}$ defined by

$$f(x,y) = xy + x^4 - 3x^2y$$

attains its infimum and supremum on $[0, 1]^2$.

Exercise 5 (Multiple Choice)

 \Box true

Decide which of the following claims are true. Try to find an argument for your guess.

(a) If (M, d) is a metric space, then M is open and closed.

 \square false

- (b) $\{(x,y) \in \mathbb{R}^2 : x^3 + 2x yx + 7y^8 \le 0\}$ is open in \mathbb{R}^2 with the usual Euclidean metric. \Box true \Box false
- $\begin{array}{c|c} \square \mbox{ true } & \square \mbox{ false} \\ (c) \end{tabular} \{(x,y) \in \mathbb{R}^2 : x^3 + 2x yx + 7y^8 > 4\} \mbox{ is open in } \mathbb{R}^2 \mbox{ with the usual Euclidean metric.} \\ \square \mbox{ true } & \square \mbox{ false} \\ \end{array}$
- (d) $\{(x, y) \in \mathbb{R}^2 : x^4 + 8y^6 + 4 \le 0\}$ is open in \mathbb{R}^2 with the usual Euclidean metric. \Box true \Box false
- (e) Let (\mathbb{R}, d) be a metric space. Then ||x|| := d(0, x) defines a norm. \Box true \Box false
- (f) If $(V, \|\cdot\|)$ is a normed space, then $d(x, y) := \|x y\|$ (for $x, y \in V$) is a metric on V. \Box true \Box false
- (g) The closed and bounded subsets of Rⁿ (with the usual Euclidean norm) are precisely the compact ones.
 □ true
 □ false
- (h) Every function $f: [0,1] \to \mathbb{R}$ defined on the compact set [0,1] has a minimum and a maximum. \Box true \Box false
- (i) Suppose we have a convergent sequence $(x_n)_{n \in \mathbb{N}}$ with

$$x_{n+1} = (2 - x_n) x_n + 1.$$

Then the limit point of $(x_n)_{n \in \mathbb{N}}$ is a solution of x = (2 - x)x + 1. \Box true \Box false

(j) Suppose we have a sequence $(x_n)_{n \in \mathbb{N}}$ with

$$x_{n+1} = (2 - x_n) x_n + 1.$$

Then the accumulation points of $(x_n)_{n \in \mathbb{N}}$ are solutions of x = (2 - x)x + 1. \Box true \Box false (5)

(10)