

UNIVERSITÄT ULM Institut Angewandte Analysis Dr. M. Biegert WS 2009/10 Total: 25 points

Submission: Tue, Jan. 19th, 2010

Exercises to Applied Analysis

sheet : 10

- **9.** Let *E* and *F* be normed vector spaces over IK and let $T \in \mathscr{L}(E, F)$.
 - (a) Show that $||T||_{\mathscr{L}(E,F)} = \sup\{||Tx|| : x \in \overline{B}_E(0,1)\}.$ [3]
 - (b) Show that $||Tx||_F \le ||T||_{\mathscr{L}(E,F)} ||x||_E$ for all $x \in E$. [3]
- 10. (a) Let *E* and *F* be normed vector spaces over IK and let $T_n, T \in \mathscr{L}(E, F)$ be such [3] that $T_n \to T$ in $\mathscr{L}(E, F)$, that is, $||T_n T||_{\mathscr{L}(E,F)} \to 0$ as $n \to \infty$. Show that $T_n \to T$ strongly, that is, $||T_n x Tx||_F \to 0$ as $n \to \infty$ for all $x \in E$.
 - (b) Find Banach spaces *E* and *F*, operators $T_n, T \in \mathscr{L}(E, F)$ such that $s \lim_n T_n = 0$ [3] and $||T_n||_{\mathscr{L}(E,F)} = 1$. Conclude, that strong-convergence is weaker than norm convergence (=uniform convergence).
- 11. Let **c** denote the space of all convergent real-valued sequences and let \mathbf{c}_0 denote the [4] subspace of **c** consisting of sequences converging to 0. Both spaces are equipped with the sup-norm. For $x \in \mathbf{c}$, $x = (x_n)_n$, we let $T : \mathbf{c} \to \mathbf{c}_0$ be given by

$$Tx := (x_{\infty}, x_1 - x_{\infty}, x_2 - x_{\infty}, \dots)$$

where $x_{\infty} := \lim_{n \to \infty} x_n$. Show that *T* is an isomorphism.

- 12. Let *E* and *F* be two normed vector spaces over the same field IK and assume that *E* and [3] *F* are isomorphic. Show that *E* is complete if and only if *F* is complete.
- **13.** Let *E* be a vector space over IK and let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on *E*. Show that the [3] identity $I: (E, \|\cdot\|_1) \to (E, \|\cdot\|_2)$ is an isomorphism if and only if the norm $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent.
- 14. Let *E* be a normed vector space over IK and let $T \in \mathscr{L}(E)$. For $n \in \mathbb{N}_0$ we define T^n [3] by $T^0 := I$, $T^1 := T$ and $T^{n+1} := T \circ T^n$. Show that $||T^k|| \le ||T||^k$ for all $k \in \mathbb{N}_0$ where $0^0 := 1$.