

UNIVERSITÄT ULM Institut Angewandte Analysis Dr. M. Biegert WS 2009/10 Total: 25 points

Submission: Tue, 15th dec. 2009

Exercises to Applied Analysis

sheet: 8

- **1.** Let $(\Omega, \mathscr{A}, \mu)$ be a measure space and let $f : \Omega \to \overline{\mathbb{R}}_+$ be a non-negative measurable [2] function such that $\int |f| d\mu = 0$. Show that f = 0 μ -almost everywhere.
- 2. Let $\Omega := \mathbb{N}$, $\mathscr{A} := \mathscr{P}(\Omega)$ and μ be the counting measure on Ω . Show that for a function [6=3+3] $f : \Omega \to \mathbb{R}$ one has that $f \in L^1(\Omega, \mathscr{A}, \mu)$ if and only if the series $\sum_{n=1}^{\infty} f(n)$ is absolutely convergent. Moreover, **prove** that in this case

$$\int f \, d\mu = \sum_{n=1}^{\infty} f(n).$$

3. Let $\Omega \subset \mathbb{R}$ be an open set, $\mathscr{B}(\Omega)$ be the Borel σ -algebra on Ω and let $f \in L^1(\Omega, \mu)$ for [6=3+3] a measure μ on $(\Omega, \mathscr{B}(\Omega))$. Show that $F : [0, \infty) \to \mathbb{R}$ given by

$$F(t) := \int_{\Omega} \exp(-t|x|) f(x) \, d\mu(x)$$

is continuous. Moreover, **decide** whether or not *F* is differentiable on $(0, \infty)$.

4. [Generalized Hölder Inequality] Let (Ω, A, μ) be a measure space and p,q,r∈[1,∞] be [6] such that 1/p+1/q = 1/r (with 1/∞ := 0). Show that for f ∈ L^p(Ω), g ∈ L^q(Ω) one has that fg ∈ L^r(Ω) and

$$\|fg\|_{r} \leq \|f\|_{p} \|g\|_{q}$$

<u>Hint</u>: The case r = 1 was proved in the lecture (Theorem 2.6.3) and can be used to prove the generalized Hölder inequality.

5. Let $(\Omega, \mathscr{A}, \mu)$ be a finite measure space, that is, $(\Omega, \mathscr{A}, \mu)$ is a measure space and [5] $\mu(\Omega) < \infty$. Let $1 \le p \le q \le \infty$. Show that $L^q(\Omega) \subset L^p(\Omega)$ and that there exists a constant $C \ge 0$ (depending on *p* and *q*) such that

$$\|f\|_p \le C \|f\|_q \qquad \forall f \in L^q(\Omega).$$

Hint: Use the Hölder inequality with appropriate functions.