Übungen zu PDE Sommersemester 2008.

Inhaltsverzeichnis

DI 44.1				•
Blatt:1				3
Transportgleichung				3
Wellengleichung				3
Blatt:2				4
Definition: Testfunktionen				4
Das schwingende Quadrat				4
Das Newton-Potential				4
Laplace-Operator in Polarkoordinaten			•	4
PL-44.2				_
Blatt:3				5
Das Dirichlet-Problem auf dem Rechteck			•	5
Blatt:4				7
Subharmonische Funktionen				7
Wärmeleitungsgleichung mit Dirichlet Randbedingungen				7
Wärmeleitungsgleichung mit Neumann Randbedingungen				7
Waling-telling-get-telling into a telling and a telling a telling and a telling a telling and a telling and a telling a telling and a telling	• •	•	•	,
Blatt:5				8
Laplace-Operator für radiale Funktionen				8
Partielle Integration				8
Fortsetzung klassisch differenzierbarer Funktionen				8
Blatt:6				9
Weitere Details zum Newton-Potential				9
Eigenschaften der Faltung				9
Mittelwerteigenschaften von Funktionen				9
Witterweitergensenarten von 1 unktionen			•	
Blatt:7				10
Hebbarkeit von Singularitäten				10
Die erste Poincaré-Ungleichung				10
Sobolev-Funktionen mit höherer Ableitung Null				10
Poisson-Problem mit Robin-Randbedingungen auf einem Intervall				10
Poisson-Problem mit gemischten Randbedingungen auf einem Intervall				10
Blatt:8				11
Sturm-Liouville-Problem mit Neumann-Randbedingungen auf einem Intervall - Version 1				11
Sturm-Liouville-Problem mit Neumann-Randbedingungen auf einem Intervall - Version 2				
Poisson-Problem mit periodischen Randbedingungen auf einem Intervall			•	11
D1-44.0				10
Blatt:9				12
Lokalität der schwachen Ableitung				12
Die Produktregel für Sobolev-Funktionen				12
Verbandseigenschaften für Sobolev-Räume				12
Blatt:10				13
Charakterisierung von $C_0(\Omega)$ mit Ω beschränkt				13
Funktionen in $H_0^1(\Omega) \cap C(\overline{\Omega})$ müssen nicht Null am Rand sein				13
Erste Poincaré-Ungleichung für offene Mengen in einem beliebigen Streifen			•	13
The erge Poincare-Lingleichling giff nicht im IK"				

Blatt:11 14

UNIVERSITÄT ULM

Institut Angewandte Analysis

Abgabetermin: Mo, 21.04.2008

Prof. Dr. W. Arendt Dr. Markus Biegert SS 2008

Gesamt: 12 Punkte

Übungen zu Partielle Differentialgleichungen

Blatt: 1

1. Beweise folgenden Satz.

[3]

Satz 1 Seien $n \in \mathbb{N}$, $c \in \mathbb{R}^n$ und $u_0 \in C^1(\mathbb{R}^n, \mathbb{R})$ (d.h. $u_0 : \mathbb{R}^n \to \mathbb{R}$ ist stetig differenzierbar). Dann ist $u(t,x) := u_0(x-tc)$ die eindeutige Lösung von

$$\begin{cases} u_t(t,x) + \nabla u(t,x) \cdot c = 0 \\ u \in C^1(\mathbb{R} \times \mathbb{R}^n) \\ u(0,x) = u_0(x). \end{cases}$$

2. Beweise folgenden Satz.

[3]

Satz 2 Seien $c \in \mathbb{R}$, $u_0 \in C^1(\mathbb{R})$ und $f \in C^1(\mathbb{R})$. Dann ist

$$u(t,x) := u_0(x-tc) + \int_0^t f(x-tc+sc) ds$$

die eindeutige Lösung von

$$\begin{cases} u_t + u_x \cdot c = f \\ u \in C^1(\mathbb{R} \times \mathbb{R}) \\ u(0, x) = u_0(x). \end{cases}$$

3. *Löse* folgende inhomogene Transportgleichung:

[3]

$$\begin{cases} u \in C^1(\mathbb{R}_+ \times \mathbb{R}) \\ 2u_t + 3u_x = \cos(x) \\ u(0, x) = (2/3)\sin(x). \end{cases}$$

4. *Löse* folgende Wellengleichung auf $\mathbb{R} \times \mathbb{R}$.

[3]

$$\begin{cases} u_{tt} = u_{xx} \\ u(0,x) = \sin(x) \\ u_t(0,x) = \sin(x). \end{cases}$$

Bitte im Newsletter-System zu dieser Vorlesung anmelden. Anmeldungen erfolgen unter

http://cantor.mathematik.uni-ulm.de/~newsletter/cgi-bin/newsletter.py

Veranstaltungstermine:

Vorlesung: Montags, 12-14 Uhr in Helmholtzstr. 18, Raum 220.

Donnerstags, 12-14 Uhr in 028, Raum H21.

Uebungen: Montags, 14-16 Uhr in Helmholtzstr. 18, Raum 220.

Institut Angewandte Analysis

Abgabetermin: Mo, 28.04.2008

Prof. Dr. W. Arendt Dr. Markus Biegert SS 2008

Gesamt: 16 Punkte

Übungen zu Partielle Differentialgleichungen

Blatt: 2

Definition 3 Für eine offene Menge $\Omega \subset \mathbb{R}^N$ bezeichnen wir mit $\mathscr{D}(\Omega)$ den Raum der Testfunktionen auf Ω gegeben durch

$$\mathscr{D}(\Omega) := \{ u \in C^{\infty}(\Omega) : \exists K \subset \Omega \text{ kompakt und } u \equiv 0 \text{ auf } \Omega \setminus K \}.$$

5. (Das schwingende Quadrat)

[8]

Sei Q das Quadrat $Q := (0, \pi)^2 \subset \mathbb{R}^2$ und seien $f_1, f_2, g_1, g_2 \in \mathcal{D}((0, \pi))$. Betrachte das Problem:

$$\begin{cases} u_{tt} = \Delta u := u_{xx} + u_{yy} & (x,y) \in Q, t \ge 0; (DGL) \\ u(t,x,y) = 0 & (x,y) \in \partial Q; (RB) \\ u(0,x,y) = f_1(x)f_2(y) & (x,y) \in Q; (AO) \\ u_t(0,x,y) = g_1(x)g_2(y) & (x,y) \in Q(AG). \end{cases}$$

- DGL='Differentialgleichung',
- RB='Randbedingungen' (hier Dirichlet Randbedingungen),
- AO='Anfangsort',
- AG='Anfangsgeschwindigkeit'.

Bestimme mit Hilfe des Separationsansatzes

$$u(t,x,y) = a(t)b(x)c(y)$$

eine (klassische) Lösung des obigen Problems.

6. (Grundlösung der Poissongleichung)

[4]

Für $N \ge 3$ betrachten wir die Funktion $E_N : \mathbb{R}^N \setminus \{0\} \to \mathbb{R}$ gegeben durch

$$E_N(x) := |x|^{2-N}$$
.

Berechne nun (auf $\mathbb{R}^N \setminus \{0\}$)

$$\Delta u := \sum_{j=1}^{N} u_{x_j x_j}.$$

7. (Der Laplace-Operator in Polarkoordinaten)

[4]

Sei $B(0,r) := \{x \in \mathbb{R}^2 : |x| < r\}, v \in C^2(B(0,r)) \text{ und } u : (0,1) \times \mathbb{R} \to \mathbb{R} \text{ gegeben durch} \}$

$$u(r, \theta) := v(r\cos(\theta), r\sin(\theta)).$$

Zeige: $\Delta v(r\cos(\theta), r\sin(\theta)) = u_{rr}(r, \theta) + u_r(r, \theta)/r + u_{\theta\theta}(r, \theta)/r^2$.

Institut Angewandte Analysis

Abgabetermin: Mo, 05.05.2008

Prof. Dr. W. Arendt Dr. Markus Biegert SS 2008

Gesamt: 16 Punkte

Übungen zu Partielle Differentialgleichungen

Blatt: 3

8. (Das Dirichlet-Problem auf dem Rechteck)

[16]

Sei $\Omega \subset \mathbb{R}^2$ das Rechteck gegeben durch $\Omega := (0,\pi) \times (0,l) \subset \mathbb{R}^2$ und sei $g \in C_0(0,\pi)$. Hierbei bezeichnet $C_0(a,b)$ den Banach gegeben durch

$$C_0(a,b) := \{u \in C([a,b]) : u(a) = u(b) = 0\}, \quad ||u||_{C_0(a,b)} := \sup_{x \in [a,b]} |u(x)|.$$

Dazu betrachten wir das Dirichlet-Problem

$$\begin{cases} u \in C^{2}(\Omega) \cap C(\overline{\Omega}), \\ \Delta u = 0 \text{ in } \Omega, \\ u(x, y) = 1_{\{l\}}(y)g(x) \text{ für } (x, y) \in \partial \Omega, \end{cases}$$
 (1)

- (a) Zeige, daß es höchstens eine Lösung von (1) gibt.
- (b) Zeige, daß der Unterraum $\mathscr{T} \subset C_0(0,\pi)$ gegeben durch

$$\mathscr{T} := \left\{ \sum_{k=1}^{N} b_k \sin_k : N \in \mathbb{N}, b_k \in \mathbb{R} \text{ für } k = 1, \dots, N \right\}$$

dicht in $C_0(0,\pi)$ liegt. Hierbei sind die Funktionen $\sin_k : \mathbb{R} \to [-1,1]$ gegeben durch

$$\sin_k(t) := \sin(tk)$$
.

(c) Zeige: Ist $g \in \mathcal{T}$ gegeben durch $g = \sum_{k=1}^{N} b_k \sin_k \min b_k \in \mathbb{R}$ für $k = 1, ..., N \in \mathbb{N}$, so ist

$$u(x,y) := \sum_{k=1}^{N} b_k \sin(kx) \frac{\sinh(ky)}{\sinh(kl)}$$

eine Lösung von (1).

(d) Seien $g_n \in \mathscr{T}$ mit $g_n = \sum_{k=1}^{N_n} b_k^{(n)} \sin_k$ und $g \in C_0(0,\pi)$. Zeige: Konvergiert $g_n \to g$ in $C_0(0,\pi)$, so konvergiert $b_k^{(n)}$ gegen b_k wobei b_k gegeben ist durch

$$b_k := \frac{2}{\pi} \int_0^{\pi} \sin(kt) g(t) dt.$$

<u>Hinweis:</u> Zeige, daß für $j,k \in \mathbb{N}_0$, $j \neq k$ gilt: $\int_0^{\pi} \sin(kt)\sin(jt) = 0$.

(e) Seien $g_n \in \mathcal{T}$, $g \in C_0(0, \pi)$ und u_n die Lösung von

$$\begin{cases} u \in C^2(\Omega) \cap C(\overline{\Omega}), \\ \Delta u = 0 \text{ in } \Omega, \\ u(x,y) = 1_{\{l\}}(y)g_n(x) \text{ für } (x,y) \in \partial \Omega, \end{cases}$$

Zeige: Konvergiert $g_n \to g$ in $C_0(0,\pi)$, so existiert $u := \lim_n u_n$ in $C([0,\pi] \times [0,l])$ und u löst das Problem (1).

9. (Zusatzaufgabe)

Wir betrachten das Rechteck $R := (a,b) \times (c,d) \subset \mathbb{R}^2$ mit a < b, c < d und reelle Konstanten c_1, c_2, c_3, c_4 . Bestimme nun eine Funktion $u \in C^2(\mathbb{R}^2)$ mit

- $\Delta u(x,y) = 0$ für alle $(x,y) \in \mathbb{R}^2$,
- $u(a,c) = c_1$, $u(b,c) = c_2$, $u(b,d) = c_3$ und $u(a,d) = c_4$.

Benutze dies um eine Darstellung der Lösung des Problems

$$\begin{cases} u \in C^{2}(\Omega) \cap C(\overline{\Omega}), \\ \Delta u = 0 \text{ in } \Omega, \\ u(x, y) = h(x, y) \text{ für } (x, y) \in \partial R, \end{cases}$$
 (2)

für beliebiges $h \in C(\partial R)$ anzugeben.

Institut Angewandte Analysis

Abgabetermin: Mo, 19.05.2008

Prof. Dr. W. Arendt Dr. Markus Biegert SS 2008

Gesamt: 16 Punkte

Übungen zu Partielle Differentialgleichungen

Blatt: 4

[2]

[4]

[2]

10. (Subharmonische Funktionen)

Sei $\Omega \subset \mathbb{R}^n$ eine offene und beschränkte Menge. Zeige: Ist $u \in C(\overline{\Omega}) \cap C^2(\Omega)$ subharmonisch in Ω und $h \in C(\overline{\Omega}) \cap C^2(\Omega)$ harmonisch in Ω und gilt $u \leq h$ auf $\partial\Omega$, so ist $u \leq h$ auf $\overline{\Omega}$.

11. (Wärmeleitungsgleichung mit Dirichlet Randbedingungen)

Wir betrachten für $u_0 \in C_0([0,\pi])$ die Wärmeleitungsgleichung

$$\left\{ \begin{array}{ll} u_t = \Delta u & t > 0, \ x \in (0,\pi) \,, & \text{Differentialgleichung (DGL)} \\ u(t,x) = 0 & x \in \{0,\pi\} \,, \ t > 0, & \text{Randbedingungen (RB)} \\ u(0,x) = u_0(x) & x \in [0,\pi] \,, & \text{Anfangswert (AW)}. \end{array} \right.$$

Sei $u \in C([0,\infty) \times [0,\pi]) \cap C^{\infty}((0,\infty),[0,\pi])$ die nach Theorem 9.4 eindeutige Lösung der obigen WLG. Zeige: Für $k \in \mathbb{N}_0$ ist

$$\frac{\partial^k u}{\partial x^k}(t,\cdot) \to 0 \text{ in } C([0,\pi]) \text{ für } t \to \infty.$$

12. (Wärmeleitungsgleichung mit Neumann Randbedingungen)

Wir betrachten die Wärmeleitungsgleichung

$$\left\{ \begin{array}{ll} u_t = \Delta u & t > 0, \ x \in (0,\pi) \,, & \text{Differentialgleichung (DGL)} \\ u_x(t,x) = 0 & x \in \{0,\pi\} \,, \ t > 0, & \text{Randbedingungen (RB)} \\ u(0,x) = u_0(x) & x \in [0,\pi] \,, & \text{Anfangswert (AW)}. \end{array} \right.$$

(a) Zeige, daß U_n für $n \in \mathbb{N}_0$ gegeben durch

[1]

$$U_n(x,t) := e^{-n^2t}\cos(nx)$$

die Eigenschaften (DGL) und (RB) erfüllen.

(b) Sei $u_0 \in C^2[0,\pi]$ mit $u_0'(0) = u_0'(\pi) = 0$. Bestimme geeignete Konstanten a_n , $(n \in \mathbb{N}_0)$, so daß die [5] Funktion u gegeben durch

$$u(t,x) := \frac{a_0}{2}U_0(t,x) + \sum_{n=1}^{\infty} a_n U_n(t,x)$$

in $C([0,\infty)\times[0,\pi])\cap C^{\infty}((0,\infty)\times[0,\pi])$ liegt und eine Lösung des obigen Problems ist.

- (c) Sei $u \in C([0,\infty) \times [0,\pi]) \cap C^1((0,\infty) \times [0,\pi])$ eine Lösung der obigen WLG. Die Gesamtwärme [2] $\mathscr{W}(t)$ zum Zeitpunkt $t \geq 0$ sei gegeben durch $\mathscr{W}(t) := \int_0^\pi u(t,x) \, dx$. Zeige, daß $\mathscr{W}(\cdot) : [0,\infty) \to \mathbb{R}$ konstant ist. Hinweis: Berechne $d\mathscr{W}/dt$.
- (d) Zeige, daß es für jedes $u_0 \in C([0,\pi])$ höchstens eine Lösung

 $u \in C([0,\infty) \times [0,\pi]) \cap C^1((0,\infty) \times [0,\pi])$

gibt. <u>Hinweis:</u> Betrachte die Energie $\mathscr{E}(t) := \frac{1}{2} \int_0^{\pi} u(t,x)^2 dx$.

Institut Angewandte Analysis

Abgabetermin: Mo, 26.05.2008

Prof. Dr. W. Arendt Dr. Markus Biegert SS 2008

Gesamt: 16 Punkte

Übungen zu Partielle Differentialgleichungen

Blatt: 5

13. (Laplace-Operator für radiale Funktionen)

Seien $0 \le r_1 < r_2 \le \infty$, $\Omega := \{x \in \mathbb{R}^N : r_1 < |x| < r_2\} \subset \mathbb{R}^N$, $v \in C^2(r_1, r_2)$ und $u : \Omega \to \mathbb{R}$ gegeben durch u(x) := v(|x|). Zeige, daß für alle $x \in \Omega$ gilt:

$$\Delta u(x) = v''(|x|) + \frac{N-1}{|x|}v'(|x|).$$

14. (Partielle Integration/Hauptsatz für spezielle C^1 -Mengen)

Sei $\gamma: \mathbb{R}^{N-1} \to \mathbb{R}$ stetig differenzierbar und sei $\Omega := \{x \in \mathbb{R}^N : x_N > \gamma(x_1, \dots, x_{N-1})\}.$

(a) Zeige: Für $z \in \partial \Omega = \{x \in \mathbb{R}^N : x_N = \gamma(x_1, \dots, x_{N-1})\}$ ist die äußere Normale von Ω im Punkte z gegeben durch

$$v(z) = \frac{(\nabla \gamma(z'), -1)}{\sqrt{|\nabla \gamma(z')|^2 + 1}}.$$

(b) Sei $U := \mathbb{R}^{N-1} \times (0, \infty)$ und sei $v \in C_c^1(\mathbb{R}^N) = \{w \in C^1(\mathbb{R}^N) : \operatorname{supp}(w) \text{ ist kompakt}\}$. Zeige:

$$\int_{U} D_{j} v = 0 \quad \text{ für alle } j \in \{1, \dots, N-1\}.$$

Hinweis: Benutze Fubini geeignet.

(c) Sei $u \in C^1_c(\mathbb{R}^N)$. Zeige, daß für $j \in \{1, \dots, N\}$ gilt:

$$\int_{\Omega} D_j u \, dx = \int_{\mathbb{R}^{N-1}} u(z', \gamma(z')) v_j(z', \gamma(z')) \sqrt{\left|\nabla \gamma(z')\right|^2 + 1} \, dz'.$$

<u>Hinweis:</u> Betrachte die Fälle $j \in \{1, ..., N-1\}$ und j = N getrennt.

(d) Definiere ein Borel-Maß σ auf $\partial\Omega$ geeignet, so daß für alle $u \in C^1_c(\mathbb{R}^N)$ gilt:

$$\int_{\Omega} D_j u \, dx = \int_{\partial \Omega} u v_j \, d\sigma.$$

Bemerkung: Dies liefert für $\Omega \in C^1$ die Existenz des Maßes σ im Hauptsatz (10.5) der Vorlesung.

15. (Fortsetzung klassisch differenzierbarer Funktionen)

(a) Sei $u \in C^1([0,1])$ mit u'(0) = 0. Zeige, daß \tilde{u} definiert durch

$$\tilde{u}(x) := \begin{cases} u(x) & \text{falls } x \in [0, 1] \\ u(-x) & \text{falls } x \in [-1, 0] \end{cases}$$

eine Funktion in $C^1[-1,1]$ ist und daß \tilde{u}' eine ungerade Funktion ist.

(b) Sei $u \in C^1([0,1])$ mit u(0) = 0. Zeige, daß \hat{u} definiert durch

$$\hat{u}(x) := \begin{cases} u(x) & \text{falls } x \in [0, 1] \\ -u(-x) & \text{falls } x \in [-1, 0] \end{cases}$$

eine Funktion in $C^1([-1,1])$ ist und daß \hat{u}' eine gerade Funktion ist.

Institut Angewandte Analysis

Abgabetermin: Mo, 02.06.2008

Prof. Dr. W. Arendt Dr. Markus Biegert SS 2008

Gesamt: 16 Punkte

Übungen zu Partielle Differentialgleichungen

Blatt: 6

16. (Eigenschaften des Newton-Potentials) Sei E_N das Newtonsche Potential im \mathbb{R}^N , also

$$E_N(x) = \begin{cases} C_N|x| & \text{falls } N = 1; \\ C_N \log(|x|) & \text{falls } N = 2; \\ C_N|x|^{2-N} & \text{falls } N \ge 3, \end{cases}$$

wobei $C_1 := 2^{-1}$, $C_2 := (2\pi)^{-1}$ und $C_N := [(2-N)w_N]^{-1}$ für $N \ge 3$ mit $w_N := \sigma(\partial B(0,1))$ die Oberfläche der Einheitskugel im \mathbb{R}^N - Vergleiche Aufgabe 6.

- (a) Zeige, daß $D_iD_jE_N \notin L^1_{loc}(\mathbb{R}^N)$ für $N \ge 2$ und $i, j \in \{1, ..., N\}$.
- (b) Zeige, daß für $N \geq 2$ gilt: $|\nabla E_N| \in L^q_{loc}(\mathbb{R}^N)$ genau dann wenn q < N/(N-1).

17. (Eigenschaften der Faltung)

(a) Zeige, daß für $f,g \in L^1(\mathbb{R}^N)$ gilt:

$$f \star g \in L^1(\mathbb{R}^N)$$
 und $||f \star g||_{L^1(\mathbb{R}^N)} \le ||f||_{L^1(\mathbb{R}^N)} ||g||_{L^1(\mathbb{R}^N)}$.

Hinweis: Benutze den Satz von Tonelli/Fubini.

(b) Zeige, daß für $f \in L^1(\mathbb{R}^N)$ und $g \in L^p(\mathbb{R}^N)$ mit $p \in (1, \infty]$ gilt:

$$f \star g \in L^p(\mathbb{R}^N)$$
 und $\|f \star g\|_{L^p(\mathbb{R}^N)} \le \|f\|_{L^1(\mathbb{R}^N)} \|g\|_{L^p(\mathbb{R}^N)}$.

<u>Hinweis:</u> Für $p \in (1, \infty)$ wende die Hölder'sche Ungleichung auf $f(x-y)g(y) = [f(x-y)^{1/p}g(y)]f(x-y)^{1/q}$ mit 1/p + 1/q = 1 an und benutze Aufgabe (17a).

(c) Zeige, daß für $f \in L^p(\mathbb{R}^N)$ und $g \in L^q(\mathbb{R}^N)$ mit $p,q \in (1,\infty)$ und 1/p+1/q=1 gilt:

$$f\star g\in L^{\infty}(\mathbb{R}^N)$$
 und $\|f\star g\|_{L^{\infty}(\mathbb{R}^N)}\leq \|f\|_{L^p(\mathbb{R}^N)}\,\|g\|_{L^q(\mathbb{R}^N)}$.

<u>Hinweis:</u> Benutze die Hölder'sche Ungleichung. Bemerkung: In diesem Fall ist $f \star g$ stetig auf \mathbb{R}^N .

(d) Seien $k \in \mathbb{N}_0$, $f \in C_c^k(\mathbb{R}^N)$ und $g \in L^1_{loc}(\mathbb{R}^N)$. Zeige, daß $f \star g \in C^k(\mathbb{R}^N)$ und

$$D^{\alpha}(f \star g) = (D^{\alpha}f) \star g$$
 für jeden Multiindex α mit $|\alpha| \le k$.

<u>Hinweis:</u> Betrachte zuerst den Fall k = 1. Der Fall k = 0 wurde in der Vorlesung gezeigt.

18. (Mittelwerteigenschaften von Funktionen)

Sei $\Omega \subset \mathbb{R}^N$ offen und $u \in C(\Omega)$. Zeige, daß folgende Aussagen äquivalent sind:

- 1. $u(z) = \frac{1}{|B(z,r)|} \int_{B(z,r)} u(x) \ dx$ für alle Kugeln $B(z,r) \subset \overline{B}(z,r) \subset \Omega$.
- 2. $u(z) = \frac{1}{\sigma(\partial B(z,r))} \int_{\partial B(z,r)} u(x) \ d\sigma(x)$ für alle Kugeln $B(z,r) \subset \overline{B}(z,r) \subset \Omega$.

Institut Angewandte Analysis

Abgabetermin: Mo, 09.06.2008

Prof. Dr. W. Arendt Dr. Markus Biegert SS 2008

Gesamt: 16 Punkte

Übungen zu Partielle Differentialgleichungen

Blatt: 7

19. (Hebbarkeit von Singularitäten)

Sei $\Omega = (a,b) \subset \mathbb{R}$ ein Intervall mit $a,b \in \mathbb{R}$, a < b und $x_0 \in (a,b)$. Zeige: Ist $u \in H^1(\Omega \setminus \{x_0\}) \cap C(\Omega)$, dann ist $u \in H^1(\Omega)$.

20. (Die erste Poincaré-Ungleichung)

Sei $\Omega = (a, b) \subset \mathbb{R}$ ein Intervall mit $a, b \in \mathbb{R}$, a < b. Zeige, daß es eine Konstante C > 0 gibt so daß

$$\|u\|_{H^1(\Omega)} \le C \|u'\|_{L^2(\Omega)}$$
 für alle $u \in H^1(\Omega)$ mit $u(a) = 0$.

21. (Sobolev-Funktionen mit höherer Ableitung Null)

Sei $\Omega = (a,b) \subset \mathbb{R}$ ein Intervall mit $a,b \in \mathbb{R}$, a < b und sei $k \in \mathbb{N}$. Zeige: Ist $u \in H^k(\Omega)$ mit $u^{(k)} = 0$ so gibt es ein Polynom p vom Grade grad $(p) \le k - 1$ so daß u(x) = p(x) für fast alle $x \in \Omega$.

22. (Poisson-Problem mit Robin-Randbedingungen auf einem Intervall)

Sei $\Omega = (a,b) \subset \mathbb{R}$ ein Intervall mit $a,b \in \mathbb{R}$, a < b und seien $\beta_0,\beta_1 \in [0,\infty)$ mit $\beta_0 + \beta_1 > 0$. Für $\lambda \ge 0$ betrachten wir das Poisson-Problem mit Robin-Randbedingungen

$$\begin{cases} \lambda u - u'' = f \text{ in } \Omega \\ u'(a) = \beta_0 u(a) \text{ und } u'(b) = -\beta_1 u(b). \end{cases}$$
 (3)

(a) Sei $V := H^1(\Omega)$ und $\mathfrak{a} : V \times V \to \mathbb{R}$ gegeben durch

$$\mathfrak{a}(u,v) := \left(\lambda \int_{\Omega} uv + \int_{\Omega} u'v'\right) + \beta_1 u(b)v(b) + \beta_0 u(a)v(a).$$

Zeige, daß $\mathfrak{a}: V \times V \to \mathbb{R}$ eine stetige und koerzive Bilinearform ist.

- (b) Für $f \in L^2(\Omega)$ definiere $F: V \to \mathbb{R}$ durch $F(v) := \int_{\Omega} fv$. Zeige: $F \in V'$.
- (c) Zeige: Für jedes $f \in L^2(\Omega)$ gibt es genau ein $u \in H^2(\Omega)$ welches (3) löst.
- (d) *Zeige*: Ist $f \in C(\overline{\Omega})$ so ist die Lösung $u \in C^2(\Omega)$.

23. (Poisson-Problem mit gemischten Randbedingungen auf einem Intervall)

Sei $\Omega = (a,b) \subset \mathbb{R}$ ein Intervall mit $a,b \in \mathbb{R}$, a < b und seinen $\alpha,\beta \in \mathbb{R}$. Für $\lambda \geq 0$ betrachten wir das Poisson-Problem

$$\begin{cases} \lambda u - u'' = f \text{ in } \Omega \\ u(a) = \alpha \text{ und } u'(b) = \beta. \end{cases}$$
(4)

Zeige, daß es für jedes $f \in L^2(\Omega)$ genau eine Lösung $u \in H^2(\Omega)$ gibt.

UNIVERSITÄT ULM

Institut Angewandte Analysis

Abgabetermin: Mo, 16.06.2008

Prof. Dr. W. Arendt Dr. Markus Biegert SS 2008

Gesamt: 16 Punkte

Übungen zu Partielle Differentialgleichungen

Blatt: 8

- **24.** Seien a < b reelle Zahlen und $\Omega := (a,b) \subset \mathbb{R}$ ein Intervall. Wir machen folgende Annahmen:
 - $\alpha > \beta > 0$ und $\delta > 0$ reelle Konstanten;
 - $p \in L^{\infty}(\Omega)$, $p \ge \alpha$ in Ω und $1/p \in H^1(\Omega)$;
 - $q \in L^{\infty}(\Omega)$;
 - $r \in L^2(\Omega)$ mit $r q^2/(4\beta) \ge \delta$ in Ω .

Zeige, daß es für jedes $f \in L^2(\Omega)$ genau eine Lösung des folgenden Problems gibt:

$$\begin{cases} u \in H^2(\Omega); \\ -(pu')' + qu' + ru = f \text{ in } \Omega; \\ u'(a) = u'(b) = 0. \end{cases}$$

Hinweis: Vergleiche Satz 15.5 der Vorlesung, d.h. benutze den Satz von Lax-Milgram.

- **25.** Seien a < b reelle Zahlen und $\Omega := (a,b) \subset \mathbb{R}$ ein Intervall. Wir machen folgende Annahmen:
 - $\alpha > \beta > 0$ und $\delta > 0$ reelle Konstanten;
 - $p \in L^{\infty}(\Omega)$, $p \ge \alpha$ in Ω und $1/p \in H^1(\Omega)$;
 - $q \in H_0^1(\Omega)$;
 - $r \in L^2(\Omega)$ mit $r q'/2 > \delta$ oder $r (q')^2/(16\beta) \beta > \delta$ in Ω .

Zeige, daß es für jedes $f \in L^2(\Omega)$ genau eine Lösung des folgenden Problems gibt:

$$\begin{cases} u \in H^2(\Omega); \\ -(pu')' + qu' + ru = f \text{ in } \Omega; \\ u'(a) = u'(b) = 0. \end{cases}$$

Hinweis: Vergleiche Satz 15.5 der Vorlesung, d.h. benutze den Satz von Lax-Milgram.

26. Seien a < b reelle Zahlen und $\Omega := (a,b) \subset \mathbb{R}$ ein Intervall. Dann definieren wir

$$H^1_{\rm per}(\Omega) := \left\{ u \in H^1(\Omega) : u(a) = u(b) \right\}, \quad \|u\|_{H^1_{\rm per}(\Omega)} := \|u\|_{H^1(\Omega)}$$

und $\mathfrak{a}: H^1_{\mathrm{per}}(\Omega) \times H^1_{\mathrm{per}}(\Omega) \to \mathbb{R}$ durch

$$\mathfrak{a}(u,v) := \int_{\Omega} uv + \int_{\Omega} u'v'.$$

Zeige, daß es zu jedem $f \in L^2(\Omega)$ genau eine Lösung des folgenden Problems gibt:

$$\begin{cases} u \in H^2(\Omega); \\ u - u'' = f \text{ in } \Omega; \\ u(a) = u(b) \text{ und } u'(a) = u'(b). \end{cases}$$

Institut Angewandte Analysis

Abgabetermin: Mo, 23.06.2008 Um 14.00 Uhr c.t. im E60

Prof. Dr. W. Arendt Dr. Markus Biegert SS 2008

Gesamt: 16 Punkte

Übungen zu Partielle Differentialgleichungen

Blatt: 9

27. (Lokalität der schwachen Ableitung)

Seien $U \subset \Omega \subset \mathbb{R}^N$ offene Mengen und seien $u, v \in W^{1,1}_{loc}(\Omega)$. Zeige: Ist u = v auf U, so ist für j = 1, ..., N

$$D_i u = D_i v$$
 auf U .

Hinweis: Vergleiche Definition 16.5 der Vorlesung.

28. (Charakterisierung von $W^{1,1}_{\mathrm{loc}}(\Omega) \cap L^{\infty}_{\mathrm{loc}}(\Omega)$ durch Approximation) Sei $\Omega \subset \mathbb{R}^N$ eine offene Menge. Zeige, daß folgende Aussagen äquivalent sind.

- 1. $u \in W_{loc}^{1,1}(\Omega) \cap L_{loc}^{\infty}(\Omega);$
- 2. Für j = 1, ..., N gibt es $u_j \in L^1_{loc}(\Omega)$ und $\varphi_n \in \mathscr{D}(\Omega) = C_c^{\infty}(\Omega)$ mit
 - $\sup_n \|\varphi_n\|_{C(K)} < \infty$ für jede kompakte Menge $K \subset \Omega$;
 - $\lim_n \varphi_n = u$ in $L^1_{loc}(\Omega)$;
 - $\lim_n D_j \varphi_n = u_j \text{ in } L^1_{loc}(\Omega).$

Zeige weiterhin, daß in diesem Fall gilt: $D_j u = u_j$ für j = 1, ..., N.

Hinweis: Vergleiche Satz 16.9 der Vorlesung.

29. (Produktregel)

Sei $\Omega \subset \mathbb{R}^N$ eine offene Menge und seien $u, v \in W^{1,1}_{loc}(\Omega) \cap L^{\infty}_{loc}(\Omega)$. Zeige, daß $uv \in W^{1,1}_{loc}(\Omega) \cap L^{\infty}_{loc}(\Omega)$ und daß für j = 1, ..., N gilt:

$$D_i(uv) = vD_iu + uD_iv.$$

Hinweis: Vergleiche Satz 16.10 der Vorlesung.

30. (Verbandeigenschaften)

Sei $\Omega \subset \mathbb{R}^N$ eine offene Menge und seien $u, v \in H^1(\Omega) = W^{1,2}(\Omega)$. Zeige, daß

- $u \wedge v = \min(u, v) \in H^1(\Omega)$;
- $u \lor v = \max(u, v) \in H^1(\Omega)$;

Hinweis: Benutze Satz 16.12 der Vorlesung und eine geeignete Darstellung von max und min.

Institut Angewandte Analysis

Abgabetermin: Mo, 30.06.2008

Prof. Dr. W. Arendt Dr. Markus Biegert SS 2008

Gesamt: 16 Punkte

Übungen zu Partielle Differentialgleichungen

Blatt: 10

31. (Charakterisierung von $C_0(\Omega)$ mit Ω beschränkt)

Sei $\Omega \subset \mathbb{R}^N$ eine offene und beschränkte Menge. Zeige folgende Identität:

$$C_0(\Omega) = \{u|_{\Omega} : u \in C(\overline{\Omega}), u = 0 \text{ auf } \partial\Omega\}.$$

32. (Funktionen in $H^1_0(\Omega) \cap C(\overline{\Omega})$ müssen nicht Null am Rand sein)

(a) Sei $B := B(0,1) \subset \mathbb{R}^N$ die offene Einheitskugel im \mathbb{R}^N mit $N \ge 2$. Dann setzen wir für $r \in (0,1)$:

$$v_r(x) := \begin{cases} 1 & \text{falls } |x| \le r; \\ \ln(|x|)/\ln(r) & \text{falls } |x| \in (r, 1). \end{cases}$$

Zeige: $v_r \in C_0(B) \cap H^1(B)$ und $v_r \to 0$ in $H^1(B)$ für $r \to 0+$

- (b) Für ein fest gewähltes $\varphi \in \mathcal{D}(B)$ setzen wir $\psi_r := \varphi \varphi(0)v_r$. Die punktierte Einheitskugel \dot{B} ist gegeben durch $\dot{B} := B \setminus \{0\} = B(0,1) \setminus \{0\}$. Zeige: $\psi_r \to \varphi$ in $H^1(\dot{B})$ und $\psi_r \in C_0(\dot{B}) \cap H^1(\dot{B})$.
- (c) Zeige: Für $N \geq 2$ gibt es eine offene Menge $\Omega \subset \mathbb{R}^N$ und $\varphi \in H_0^1(\Omega) \cap C(\overline{\Omega})$ mit $\varphi \not\equiv 0$ auf $\partial \Omega$.

33. (Erste Poincaré-Ungleichung für offene Mengen in einem beliebigen Streifen)

Sei *B* eine orthogonale $N \times N$ -Matrix, $b \in \mathbb{R}^N$ und $T : \mathbb{R}^N \to \mathbb{R}^N$ gegeben durch

$$Tx := Bx + b$$
.

Sei $\Omega \subset \mathbb{R}^N$ offen so daß $T\Omega$ in einem Streifen $S_{j_0,\delta}$ liegt (vgl. Vorlesung). Zeige:

$$||u||_{L^{2}(\Omega)} \leq 2\delta ||\nabla u||_{L^{2}(\Omega)^{N}}$$

für alle $u \in H_0^1(\Omega)$.

34. (Die erste Poincaré-Ungleichung gilt nicht im \mathbb{R}^N)

Zeige daß die erste Poincaré-Ungleichung im \mathbb{R}^N nicht gilt, d.h. zeige daß es keine Konstante C > 0 gibt, so daß für alle $u \in H_0^1(\mathbb{R}^N)$ gilt:

$$||u||_{L^2(\mathbb{R}^N)} \le C ||\nabla u||_{L^2(\mathbb{R}^N)^N}.$$

<u>Hinweis:</u> Betrachte eine Funktion $\varphi \in \mathcal{D}(\mathbb{R}^N)$ und dazu Funktionen $\varphi_n(x) := \varphi(x/n)$.

UNIVERSITÄT ULM

Institut Angewandte Analysis

Prof. Dr. W. Arendt Dr. Markus Biegert SS 2008

Gesamt: 16 Punkte

Abgabetermin: Mo, 07.07.2008 14:00 c.t. im Raum 202/203 in HeHo 22


Übungen zu Partielle Differentialgleichungen

Blatt: 11

- **35.** *Finde* eine offene Menge $\Omega \subset \mathbb{R}^N$ so daß die Einbettung von $H_0^1(\Omega)$ in $L^2(\Omega)$ nicht kompakt ist.
- **36.** Sei $\Omega \subset \mathbb{R}^N$ ein Gebiet. *Zeige*: Ist $u \in W^{1,1}_{loc}(\Omega)$ und $\nabla u = 0$, dann ist u konstant. <u>Hinweis:</u> Was ist $(D_j u)_{\varepsilon}$?
- 37. Sei $\Omega \subset \mathbb{R}^N$ eine offene Menge und $u \in W^{1,1}_{loc}(\Omega)$. Zeige: Ist $D_iD_ju \in C(\Omega)$ für $i,j=1,\ldots,N$, so ist $u \in C^2(\Omega)$. Hinweis: Wir sagen $D_iD_ju \in C(\Omega)$ falls es ein $g \in C(\Omega)$ gibt so daß

$$\int_{\Omega} u D_j D_i \varphi = \int g \varphi \qquad \text{ für alle } \varphi \in \mathscr{D}(\Omega).$$

- **38.** Sei $\Omega \subset \mathbb{R}^N$ eine offene Menge und sei $u \in H^2(\Omega)$. Zeige, daß $D_i(D_ju) = D_j(D_iu)$ für i, j = 1, ..., N. Hinweis: Benutze die Definition der Ableitung.
- **39.** Wähle zwei verschiedene Sätze der Vorlesung aus und bereite diese Sätze so vor, daß Du sie in den Übungen vorstellen kannst.

