Applied analysis

Exercise sheet 12

Exercise 40.

For $y \in l^1$ we let $\varphi_y : \mathbf{c_0} \to \mathbb{K}$ be given by

$$\varphi_y(x) := \sum_{n=1}^{\infty} x_n y_n.$$

a: Show that $\varphi_y \in \mathbf{c}'_0$ and $\|\varphi_y\|_{\mathbf{c}'_0} = \|y\|_{l^1}$.

b: Show that $y \mapsto \varphi_y : l^1 \to \mathbf{c}'_0$ is an isometric isomorphism.

(2/3 points)

Exercise 41.

For $y \in l^{\infty}$ we let $\varphi_y : l^1 \to \mathbb{K}$ be given by

$$\varphi_y(x) := \sum_{n=1}^{\infty} x_n y_n$$

Show that $\varphi_y \in (l^1)'$ for all $y \in l^\infty$ and that $y \mapsto \varphi_y : l^\infty \to (l^1)'$ is an isometric isomorphism.

(2/3 points)

Exercise 42.

Let a < b be real numbers, E := C([a, b]) and let $k \in E$. Verify that $\varphi_k : C([a, b]) \to \mathbb{K}$ given by

$$\varphi_k(f) := \int_a^b f(t)k(t) dt$$
 is in E' and that $\|\varphi_k\|_{E'} = \|k\|_{L^1([a,b])}$.

(5 points)

Exercise 43.

Let $a, b \in \mathbb{R}$ with a < b, E := C([a, b]) and let $k \in C([a, b] \times [a, b])$. Then we define $T_k : C([a, b]) \to C([a, b])$ by

$$(T_k f)(x) := \int_a^b k(x, y) f(y) \, dy.$$

Prove that T_k is well-defined, $T_k \in \mathcal{L}(E)$ and that

$$||T_k||_{\mathcal{L}(E)} \le \sup_{x \in [a,b]} \int_a^b |k(x,y)| \, dy.$$

(5 points)