Applied analysis

Exercise sheet 4

Exercise 13.

Let X = C[0,1]. Recall that X is a Banach space for the norm

$$||u||_{\infty} = \sup_{t \in [0,1]} |u(t)|.$$

- (1) Let $Y = \{u \in X : u(1) = 1\}$. Show that Y is a closed subset of X. Deduce that Y is complete.
- (2) Let $T: Y \to Y$ be given by

$$(Tu)(t) = tu(t).$$

Show that for $u, v \in Y, u \neq v$,

$$||Tu - Tv||_{\infty} < ||u - v||_{\infty}.$$

(3) Show that T does not have a fixed point.

Exercise 14.

Find a mapping $T : [0, \infty) \to [0, \infty)$ such that |Tx - Ty| < |x - y| for all $x, y \in [0, \infty), x \neq y$ and T does not have a fixed point.

Exercise 15.

- **a:** Let X be a metric space and $K \subset X$ be a compact set. Show that K is closed and bounded.
- **b:** Let $p \in [1, \infty]$ and let $(x_n)_n$ with $x_n = (x_n^k)_k$ be a convergent sequence in l^p with limit $x_0 = (x_0^k)_k \in l^p$. Show that for fixed $k \in \mathbb{N}$ the sequence $(x_n^k)_n$ converges in \mathbb{K} to x_0^k .
- **c**: Let X be a metric space and let L be a subset of C(X). Show that if L is bounded then L is pointwise bounded.

Exercise 16.

Show that c_{00} is not dense in l^{∞} .