Applied analysis

Exercise sheet 5

Exercise 17. Let [a, b] be a compact (i.e. bounded and closed) interval in \mathbb{R} . Show that the unit ball of C[a, b] is not compact.

Exercise 18. Let X be a metric space. Show that $R \subset X$ is relatively compact iff every sequence in R has a convergent subsequence in X.

Exercise 19. Let μ be an outer measure on Ω . Show that the following hold true: **a:** Every set $A \subset \Omega$ with $\mu(A) = 0$ is μ -measurable.

b: If $A \subset \Omega$ is μ -measurable then A^c is also μ -measurable.

c: If $A \subset \Omega$ is μ -measurable and $B \subset \Omega$ then A is μ_B -measurable.

Exercise 20. Let Ω be a set and μ an outer measure on Ω . If $A_1, A_2 \subset \Omega$ are μ -measurable then the intersection $A_1 \cap A_2$ is also μ -measurable.