Applied analysis

Exercise sheet 8

Exercise 29. (a) Let (Ω, \mathcal{A}) be a measurable space and let $f : \Omega \to \overline{\mathbb{R}}$ be a \mathcal{A} -measurable function. Show that f^+ and f^- are \mathcal{A} -measurable.

(1 point)

(b) Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and let $f : \Omega \to \overline{\mathbb{R}}^+$ be a nonnegative measurable function such that $\int |f| d\mu = 0$. Show that f = 0 a.e.

(2 points)

Exercise 30. Decide whether the function $f(x) := \frac{\sin x}{x}$ is Lebesgue integrable on the interval $[1, +\infty]$. You may use the fact that $\int_{1}^{+\infty} \frac{\cos x}{x} dx$ exists (as a Riemann integral).

Hint: $y^2 \le y$ for $y \in [0, 1]$. Also $\cos(2x) = \cos^2 x - \sin^2 x$.

(4 points)

Exercise 31. Compute $\int_a^b f(x) dx$ where

i: $f(x) = \sin^{n} x \cos x$, $a = 0, b = 5\pi$ ii: $f(x) = x^{n} e^{cx}$, a = 0, b = 1iii: f(x) = 0 if x is rational, f(x) = 4 if x is irrational, a = 0, b = civ: $f(x) = x^{c}$ $a = 1, b = +\infty$ v: $f(x) = c^{x}$ c > 0, a = 1, b = 2

n is always a natural number, c is a real parameter. (2 points each)

Exercise 32. Let $\Omega = \mathbb{N}$, $\mathcal{A} = \mathcal{P}(\Omega)$ and let μ be the counting measure on Ω . Prove that f belongs to $L^1(\Omega, \mathcal{A}, \mu)$ if and only if the series $\sum_n f(n)$ is absolutely convergent. Verify that in this case

$$\int f \, d\mu = \sum_{n} f(n).$$

(3 points)