Applied analysis Test Exam

Task 1. Consider the Banach space C([0,1]) equipped with the sup norm $\|\cdot\|_{\infty}$. Fix a function $g \in C([0,1])$. Define a mapping $T : C([0,1]) \to C([0,1])$ by

$$(Tf)(x) := \frac{1}{4} \int_0^x f(s/3) \, ds + g(x)$$

- **a:** Check that T is well-defined.
- **b**: Verify that T is a strict contraction on C([0, 1]).
- **c:** Prove that there exists a unique function $u \in C([0,1])$ such that

$$u(x) = \frac{1}{4} \int_0^x u(s/3) \, ds + g(x)$$

Task 2. Let $(\mathbb{R}^n, \mathcal{A}, \mu)$ be a measure space, \mathcal{A} is the Borel σ -algebra. Show that for any integrable function $f : \mathbb{R}^n \to \mathbb{R}$ and any R > 0 the following holds:

$$\lim_{n \to \infty} \int_{B(0, R - \frac{1}{n})} |f| \, d\mu(x) = \|f\|_{L^1(B(0, R), \mathcal{A}, \mu)}$$

Task 3. Let E := C([0,1]). Show that $\varphi : C([0,1]) \to \mathbb{R}$ given by

$$\varphi(f) = \int_0^1 [3f(t) + 4t^2 f(t)] dt$$

is in E' and compute $\|\varphi\|_{E'}$.

Task 4. Let $T: C([0,1]) \to C([0,1])$ be given by

$$(Tf)(x) := \frac{1}{4} \int_0^x f(s/3) \, ds.$$

Show that S := I - T is invertible.

Task 5. Consider the real Hilbert space l^2 . Define a set

$$A := \left\{ x = (x_k)_k \in l^2 : x_1 > 0 \right\}$$

and a point b := (-3, 0, 0, 0, 0, ...)

a: Check that A is open and convex.

b: Prove that there exists $\varphi\in (l^2)'$ and $\gamma\in\mathbb{R}$ such that $\varphi(x)<\gamma\leq\varphi(y)$

for any $x \in A$.

Task 6. Is the unit ball in C([-4, 2]) compact? Prove your assertion.

Task 7. Let $f(t) := e^t$. Show that abs(f) = 1 and $\hat{f}(s) = 1/(s-1)$ for s > abs(f). (\hat{f} denotes the Laplace transform of f).

Task 8. Let $f: [0,1] \times [1,\infty) \to \mathbb{R}$ be given by $f(t,x) := \cos(t^2x)x^{-3}$. Show that the function $F: [0,1] \to \mathbb{R}$ given by

$$F(t) := \int_{1}^{\infty} f(t, x) \, dx$$

is continuous.