

Universität Ulm

Abgabe: Freitag, 4.6.2016

Prof. Dr. R. Zacher Dr. Dominik Dier Sommersemester 16 Punktzahl: 10

Übungen Partielle Differentialgleichungen: Blatt 7

- 1. (a) Sei $f \in S(\mathbb{R}^n)$, dann gilt nach der Vorlesung $||f||_{L^2(\mathbb{R}^n)} = ||\hat{f}||_{L^2(\mathbb{R}^n)}$. Nach dem Fortsetzungsprinzip (siehe Spuroperator) können wir also die Fouriertransformation auf $L^2(\mathbb{R}^n)$ definieren. Für $k \in \mathbb{N}$ definieren wir den Hilbertraum $\tilde{H}^k(\mathbb{R}^n) := \{u \in L^2(\mathbb{R}^n) : (1+|\xi|^k)\hat{u} \in L^2(\mathbb{R}^n)\}, ||u||_{\tilde{H}^k(\mathbb{R}^n)} := ||(1+|\xi|^k)\hat{u}||_{L^2(\mathbb{R}^n)}.$
 - (b) Sei $b \in \mathbb{R}^n$ und c > 0. Zeige: Falls |b| hinreichend klein ist, so existiert für all $f \in L^2(\mathbb{R}^n)$ genau ein $u \in H^2(\mathbb{R}^n)$, sodass gilt $-\Delta u + b \cdot \nabla u + cu = f$.
- **2.** Sei $G \subset \mathbb{R}^n$ ein beschränktes Gebiet mit C^1 -Rand, $h \in C(\partial G)$ mit $0 \le h(x) \le h_0$ für alle $x \in G$, $a \in L_{\infty}(G)$ mit $0 < \delta \le a(x)$ für fast alle $x \in G$ und $f \in L^2(G)$.
 - (a) Leite die schwache Formulierung der folgenden Gleichung her.

Zeige: $\tilde{H}^k(\mathbb{R}^n)$ ist isomorph zu $H^k(\mathbb{R}^n)$.

$$\begin{cases}
-\Delta u + a(x)u = f & \text{auf } G, \\
\partial_{\nu} u + hu = 0 & \text{auf } \partial G
\end{cases}$$

- (b) Zeige unter Verwendung von Lax–Milgram Existenz und Eindeutigkeit einer schwachen Lösung.
- **3.** Sei G = (-1,1), $a \in L_{\infty}(G)$ mit $0 \le a(x)$ für fast alle $x \in G$ und $f \in L^{2}(G)$. Leite die schwache Formulierung der Gleichung

$$\begin{cases} u_{xxxx} + a(x)u = f & \text{auf } G, \\ u(-1) = u(1), \\ u'(-1) = u'(1) \end{cases}$$

her und zeige Existenz und Eindeutigkeit einer schwachen Lösung in $\mathring{H}^2(G)$.

- **4.** Gegenbeispiele zur maximalen Regularität in L_{∞} und C.
 - (a) Sei n = 2 und $u(x) = \begin{cases} x_1 x_2 \log(x_1^2 + x_2^2) & : x \neq 0, \\ 0 & : x = 0, \end{cases}$ $x = (x_1, x_2) \in \overline{B_1(0)}.$ Zeige: $\Delta u \in L_{\infty}(B_1(0))$ (im Sobolevschen Sinne) und $u|_{\partial B_1(0)} = 0$, aber $u \notin W_{\infty}^2(B_1(0)).$
 - (b) Sei $n \ge 2$ und $P(x) = x_1 x_2$. Sei $\eta \in C_0^{\infty}(B_2(0))$ mit $\eta \equiv 1$ in $\overline{B_1(0)}$. Sei $c_k := \frac{1}{k}$ und $t_k := 2^k$ für $k \in \mathbb{N}$. Betrachte die Funktion

$$f(x) := \sum_{k=1}^{\infty} c_k \left[\Delta(\eta P) \right] (t_k x), \quad x \in \mathbb{R}^n.$$

Zeige: f ist stetig in \mathbb{R}^n , aber die Gleichung $-\Delta u = f$ besitzt für kein $\varepsilon > 0$ eine $C^2(B_{\varepsilon}(0))$ -Lösung in $B_{\varepsilon}(0)$.