

Universität Ulm

Abgabe: Mittwoch, 18.7.2012

Prof. Dr. W. Arendt Stephan Fackler Sommersemester 2012 Punktzahl: 20

Lösungen Hilberträume & Fouriertransformation: Blatt 13

Für die Vorleistung werden 120 Übungspunkte benötigt, das sind 50% der Übungspunkte aus den Übungsblättern 1 bis 12. Das aktuelle Übungsblatt 13 ist das letzte und wird als Bonusblatt gewertet.

37. Fouriertransformation bestimmen. Bestimme die Fouriertransformation der folgenden Funktionen $f \in L^1(\mathbb{R})$.

(a)
$$f(y) = e^{-ay} \mathbb{1}_{(0,\infty)}(y) \text{ für } a > 0.$$
 (3)

Lösung: Es gilt

$$\hat{f}(x) = \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-ay} e^{-ixy} \, dy = \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-(a+ix)y} \, dy = \frac{1}{\sqrt{2\pi}(a+ix)}.$$

(b)
$$f(y) = \mathbb{1}_{[-n,n]}(y)$$
 für $n \in \mathbb{N}$. (3)

Lösung: Es gilt

$$\hat{f}(x) = \frac{1}{\sqrt{2\pi}} \int_{-n}^{n} e^{-ixy} \, dy = \frac{1}{\sqrt{2\pi}ix} (e^{inx} - e^{-inx}) = \sqrt{\frac{2}{\pi}} \frac{\sin(nx)}{x}.$$

(c)
$$f(y) = ye^{-y^2/2}$$
. (3)

Lösung: Sei $F(y) = e^{-y^2/2}$. Dann ist

$$\hat{f}(y) = -\widehat{F'}(y) = -iy\hat{F}(y) = -iye^{y^2/2}$$

38. Ein kurzer Blick auf Banachalgebren. Eine assoziative Algebra über einem Körper \mathbb{K} ($\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$) ist ein \mathbb{K} -Vektorraum mit einer bilinearen Verknüpfung $*: A \times A \to A$, der Multiplikation auf A, für die das Assoziativgesetz gilt.

Ein \mathbb{K} -Vektorraum mit einer Norm $\|\cdot\|$ und einem Produkt * heißt Banachalgebra über \mathbb{K} , falls

- $(A, +, ||\cdot||)$ ein Banachraum ist,
- (A, +, *) eine assoziative K-Algebra ist und
- $||a*b|| \le ||a|| ||b||$ für alle $a, b \in A$ gilt.

Wir haben in der Vorlesung also gesehen, dass die Faltungsalgebra $(L^1(G), +, *)$ eine Banachalgebra ist.

(a) Zeige, dass in jeder Banachalgebra A die Multiplikation $A \times A \to A, (a, b) \mapsto a * b$ stetig ist. (2)

Lösung: Seien $a_n \to a$ und $b_n \to b$ gegeben. Dann ist

$$||a_n * b_n - a * b|| = ||a_n * (b_n - b) + (a_n - a) * b|| \le ||a_n * (b_n - b)|| + ||(a_n - a) * b||$$

$$< ||a_n|| ||b_n - b|| + ||a_n - a|| ||b||.$$

Die rechte Seite geht gegen Null, da (a_n) als konvergente Folge beschränkt ist.

(b) Zeige, dass die assoziative Algebra $C_b(\mathbb{R})$ der komplexwertigen beschränkten stetigen Funktionen auf \mathbb{R} mit der Supremumsnorm eine Banachalgebra ist. (3)

Lösung: Wir zeigen zuerst, dass $C_b(\mathbb{R})$ ein Banachraum ist. Wir haben bereits in der Vorlesung gesehen, dass die Menge aller beschränkten Funktionen mit der Supremumsnorm ein Banachraum ist. Es reicht also zu zeigen, dass $C_b(\mathbb{R})$ in diesem Raum abgeschlossen ist. Das folgt aber sofort aus der Grundvorlesung Analysis, in der gezeigt wurde, dass der gleichmäßiger Grenzwert stetiger Funktionen stetig ist. Ferner gilt für $f, g \in C_b(\mathbb{R})$ die Ungleichung $|(fg)(x)| = |f(x)| |g(x)| \le ||f||_{\infty} ||g||_{\infty}$ für alle $x \in \mathbb{R}$. Also gilt $||f \cdot g||_{\infty} \le ||f||_{\infty} ||g||_{\infty}$. Somit ist $C_b(\mathbb{R})$ eine Banachalgebra.

Hinweis: Nach der Formulierung der Aufgabe muss der zweite der drei oberen Punkte also nicht überprüft werden.

- **39.** Die Faltungsalgebra besitzt keine Eins. Wir sagen, eine Banachalgebra A besitzt eine Eins, falls es ein $e \in A$ mit $e \cdot f = f \cdot e = f$ für alle $f \in A$ gibt. Zeige:
 - (a) Die Banachalgebra $C_b(\mathbb{R})$ besitzt eine Eins. (1)

Lösung: Die Einsfunktion $\mathbb{1}: x \mapsto 1$ ist offensichtlich eine Eins in $C_b(\mathbb{R})$.

(b) Die Banachalgebra $C_0(\mathbb{R})$ besitzt keine Eins. (2)

Lösung: Angenommen, $e \in C_0(\mathbb{R})$ ist eine Eins in $C_0(\mathbb{R})$. Für $m \in \mathbb{Z}$ betrachte eine Funktion $f_m \in C_0(\mathbb{R})$ mit $f_m(x) = 1$ für alle $x \in [m, m+1]$. Hieraus folgt $e(x) = e(x) f_m(x) = f_m(x) = 1$ für alle $x \in [m, m+1]$. Da $m \in \mathbb{Z}$ beliebig ist, folgt $e = \mathbb{1}_{\mathbb{R}}$ im Widerspruch zu $e \in C_0(\mathbb{R})$.

(c) Die Faltungsalgebra $(L^1(G), +, *)$ besitzt keine Eins. (3)

Lösung: Angenommen, $e \in L^1(\mathbb{R})$ ist eine Eins in $L^1(\mathbb{R})$. Dann ist e * f = f und da die Fouriertransformation \mathcal{F} nach der Vorlesung ein Algebrahomomorphismus $L^1(\mathbb{R}) \to C_0(\mathbb{R})$ ist, folgt

$$\mathcal{F}(e) \cdot f = \mathcal{F}(e) \cdot \mathcal{F}(f) = \mathcal{F}(e * f) = \mathcal{F}(f) = f.$$

Da f(x) > 0 für alle $x \in \mathbb{R}$ gilt, folgt hieraus $\mathcal{F}(e) = \mathbb{1}_{\mathbb{R}}$. Nach dem Satz von Riemann-Lebesgue müsste aber $\mathcal{F}(e) \in C_0(\mathbb{R})$ gelten, ein Widerspruch!

Hinweis: Betrachte die Funktion $f(x) = e^{-\frac{x^2}{2}}$ und deren Fouriertransformation.