

Universität Ulm

Abgabe: Donnerstag, 11.7.2013

Jun.-Prof. D. Mugnolo Stephan Fackler Sommersemester 2013 Punktzahl: 30

(5)

Übungen Elemente der Funktionentheorie: Blatt 4

17. Potenzreihen. Bestimme für die folgenden Funktionen f jeweils an den angegebenen Entwicklungspunkten $a \in \mathbb{C}$ die Potenzreihenentwicklung und deren Konvergenzradius.

(a)
$$f(z) = \exp z$$
 an $a \in \mathbb{C}$ beliebig. (3)

(b)
$$f(z) = \frac{1}{z}$$
 an $a \in \mathbb{C}^*$ beliebig. (3)

(c)
$$f(z) = \frac{1}{z^2 - 5z + 6}$$
 an $a = 0$. (3)

18. Die Leibnizsche Regel. Beweise die Leibnizsche Regel aus der Vorlesung:

Es sei $O \subset \mathbb{C}$ offen und $f:[a,b] \times O \to \mathbb{C}$ eine stetige Funktion so, dass $f(t,\cdot)$ für alle $t \in [a,b]$ holomorph ist und $\frac{\partial f}{\partial z}$ stetig ist. Zeige, dass dann

$$g(z) := \int_a^b f(t, z) dt$$

auf O holomorph ist und für alle $z \in O$ ist

$$g'(z) = \int_a^b \frac{\partial f}{\partial z}(t, z) dt.$$

- **19.** Abbildungseigenschaften ganzer Funktionen. Sei $f: \mathbb{C} \to \mathbb{C}$ eine nicht-konstante ganze Funktion. Zeige, dass dann das Bild von f dicht in \mathbb{C} liegt. (5)
- **20.** Die Gamma-Funktion. Für Re z>0 definieren wir die Gammafunktion als das uneigentliche Integral

$$\Gamma(z) := \int_0^\infty t^{z-1} e^{-t} \, dt.$$

- (a) Zeige, dass die uneigentlichen Integrale für alle $z \in \mathbb{C}$ mit Re z > 0 existieren. (3)
- (b) Zeige, dass $\Gamma(z)$ auf der Halbebene Rez > 0 holomorph ist. **Hinweis:** Betrachte dazu die Funktionen $f_n(z) := \int_{1/n}^n t^{z-1} e^{-t} dt$ für $n \in \mathbb{N}$. (5)
- (c) Zeige, dass die Gammafunktion für Re z > 0 die Funktionalgleichung $\Gamma(z+1) = z\Gamma(z)$ erfüllt. Folgere daraus, dass für $n \in \mathbb{N}_0$ die Identität $\Gamma(n+1) = n!$ gilt. (3)