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1A Crash Course in Measure Theory
In classical quantum mechanics (pure) a quantum mechanical system is de-
scribed by some complex Hilbert space. For example, the (pure) states of a
single one-dimensional particle can be described by elements in the Hilbert
space L2(R) as introduced in introductory courses in quantum mechanics. A
natural first attempt to mathematically define this space is the following:

L2(R) =
{
f : R→C : f|[−n,n] Riemann-int. for n ∈N and

∫ ∞
−∞
|f (x)|2dx <∞

}
.

However, there are several issues. First of all, the natural choice

‖f ‖2 B
(∫ ∞
−∞
|f (x)|2dx

)1/2

does not define a norm on L2(R) as there exist functions 0 , f ∈ L2(R) with
‖f ‖2 = 0. This problem can easily be solved by identifying two functions
f ,g ∈ L2(R) whenever ‖f − g‖2 = 0. A more fundamental problem is that the
above defined space is not complete, i.e. there exist Cauchy sequences in L2(R)
which do not converge in L2(R). Therefore one has to replace L2(R) as defined
above by its completion. This is perfectly legitimate from a mathematical
point of view. However, this approach has a severe shortcoming: we do not
have an explicit description of the elements in the completion. Even worse,
we do not even know whether these elements can be represented as functions.

To overcome these issues, we now introduce an alternative way to integra-
tion, finally replacing the Riemann-integral by the so-called Lebesgue-integral.
In order to be able to introduce the Lebesgue-integral we need first a rigorous
method to measure the volume of subsets of Rn or more abstract sets which
then can be used to define the Lebesgue integral.

The material covered in this chapter essentially corresponds to the basic
definitions and results presented in an introductory course to measure theory.
We just give the definitions with some basic examples to illustrate the concepts
and then state the main theorems without proofs. More details and the proofs
can be learned in any course on measure theory or from the many excellent
text books, for example [Bar95] or [Rud87]. For further details we guide the
interested reader to the monographs [Bog07].

1.1 Measure Spaces

For n ∈N let P (Rn) denote the set of all subsets of Rn. The measurement of
volumes can then be described by a mapping m : P (Rn)→R≥0∪{∞}. In order
to obtain a reasonable notion of volume one should at least require
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1. A Crash Course in Measure Theory

(i) m(A∪B) =m(A) +m(B) for all A,B ⊂R
n with A∩B = ∅,

(ii) m(A) = m(B) whenever A,B ⊂ R
n are congruent, i.e. B can be obtained

from B by a finite combination of rigid motions.

Intuitively, this sounds perfectly fine. However, there is the following
result published by S. Banach and A. Tarski in 1924.

Theorem 1.1.1 (Banach–Tarski paradox). Let n ≥ 3 and A,B ⊂R
n be arbitrary

bounded subsets with non-empty interiors. Then A and B can be partitioned into a
finite number of disjoints subsets

A = A1 ∪ . . .∪An and B = B1 ∪ . . .∪Bn

such that for all i = 1, . . . ,n the sets Ai and Bi are congruent.

Using such paradoxical decompositions we see that m must agree for all
bounded subsets of Rn with non-empty interiors. For example, by splitting a
cube Q into two smaller parts, we see that m(Q) ∈ (0,∞) leads to a contradic-
tion. Hence, it is impossible to measure the volume of arbitrary subsets of Rn

in a reasonable way!

Remark 1.1.2. Of course, we all know that in physical reality such a paradox
does not occur. Indeed, the decompositions given by the Banach–Tarski
paradox are not constructive and therefore cannot be realized in the real
world. More precisely in mathematical terms, the proof of the Banach–Tarski
paradox requires some form of the axiom of choice.

Since we cannot measure the volume of arbitrary subsets of Rn in a con-
sistent reasonable way, it is necessary to restrict the volume measurement
to a subset of P (Rn). This subset should be closed under basic set theoretic
operations. This leads to the following definition which can be given for
arbitrary sets Ω instead of Rn.

Definition 1.1.3 (σ-algebra). Let Ω be a set. A subset Σ ⊂ P (Ω) is called a
σ -algebra if

(a) ∅ ∈ Σ,

(b) Ac ∈ Σ for all A ∈ Σ,

(c) ∪n∈NAn ∈ Σ whenever (An)n∈N ⊂ Σ.

The tuple (Ω,Σ) is called a measurable space and the elements of Σ are called
measurable.
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1.1. Measure Spaces

Note that it follows from the definition that for A,B ∈ Σ one also has
A∩ B ∈ Σ and B \A ∈ Σ. The closedness of Σ under countable unions may
be the less intuitive of the above defining properties. It guarantees that
σ -algebras behave well under limiting processes which lie at the hearth of
analysis. We now give some elementary examples of σ -algebras.

Example 1.1.4. (i) Let Ω be an arbitrary set. Then the power set P (Ω) is
clearly a σ -algebra.

(ii) Let Ω be an arbitrary set. We define Σ as the set of subsets of Ω which
are countable or whose complement is countable. One then can check
that Σ is a σ -algebra. Here one has to use the fact that countable unions
of countable sets are again countable. Note that Σ does in general not
agree with P (Ω). For example, if Ω = R, then the interval [0,1] is not
contained in Σ.

We now give an important and non-trivial example of a σ -algebra which
will be frequently used in the following.

Example 1.1.5 (Borel σ-algebra). Let Ω be a subset of Rn for n ∈N, or more
general a normed, metric or topological space. Then the smallest σ -algebra
that contains all open sets O of Ω

B(Ω) =
⋂

Σ σ -algebra:
Σ⊃O

Σ

is called the Borel σ -algebra on Ω. One can show that B(Rn) is the smallest
σ -algebra that is generated by elements of the form [a1,b1) × · · · [an,bn) for
ai < bi , i.e. by products of half-open intervals.

Recall that a function f : Ω1→Ω2 between two normed or more general
metric or topological spaces is continuous if and only if the preimage of every
open set under f is again open. This means that f preserves the topological
structure. In the same spirit measurable mappings are compatible with the
measurable structures on the underlying spaces.

Definition 1.1.6 (Measurable mapping). Let (Ω1,Σ1) and (Ω2,Σ2) be two
measurable spaces. A map f : Ω1→Ω2 is called measurable if

f −1(A) ∈ Σ1 for all A ∈ Σ2.

A function f : Ω1→Ω2 between two normed spaces (or more generally two
metric or topological spaces) is called measurable if f is a measurable map
between the measurable spaces (Ω1,B(Ω1)) and (Ω2,B(Ω2)).
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1. A Crash Course in Measure Theory

It is often very convenient to consider functions f : Ω → R, where R

denotes the extended real line R = R∪ {∞} ∪ {−∞}. In this case one calls f
measurable if and only if X∞ = {x ∈Ω : f (x) =∞} and X−∞ = {x ∈Ω : f (x) =
−∞} are measurable and the restricted function f : Ω \ (X∞ ∪X−∞)→ R is
measurable in the sense just defined above. If a real-valued function takes the
values∞ or −∞, we will implicitly always work with this definition. We will
often need the following sufficient conditions for a mapping to be measurable.

Proposition 1.1.7. Let Ω1 and Ω2 be two normed vector spaces or more generally
metric or topological spaces. Then every continuous mapping f : Ω1 → Ω2 is
measurable. Further, every monotone function f : R→R is measurable.

Furthermore, measurable functions are closed under the usual arithmetic
operations and under pointwise limits.

Proposition 1.1.8. Let (Ω,Σ,µ) be a measure space.

(a) Let f ,g : Ω→ C be measurable. Then f + g, f − g, f · g and f /g provided
g(x) , 0 for all x ∈Ω are measurable as well.

(b) Let fn : Ω → C be a sequence of measurable functions such that f (x) B
limn→∞ fn(x) exists for all x ∈Ω. Then f is measurable.

We now assign a measure to a measurable space.

Definition 1.1.9 (Measure). Let (Ω,Σ) be a measurable space. A measure on
(Ω,Σ) is a mapping µ : Σ→R≥0 ∪ {∞} that satisfies

(i) µ(∅) = 0.

(ii) µ(∪n∈NAn) =
∑∞
n=1µ(An) for all pairwise disjoint (An)n∈N ⊂ Σ.

The triple (Ω,Σ,µ) is a measure space. If µ(Ω) <∞, then (Ω,Σ,µ) is called a
finite measure space. If µ(Ω) = 1, one says that (Ω,Σ,µ) is a probability space.

One can deduce from the above definition that a measure satisfies µ(A) ≤
µ(B) for all measurable A ⊂ B and µ(∪n∈NBn) ≤

∑∞
n=1µ(Bn) for arbitrary

(Bn)n∈N ⊂ Σ. Moreover, one has µ(A \B) = µ(A)− µ(B) for measurable B ⊂ A
whenever µ(B) <∞. We begin with some elementary examples of measure
spaces.

Example 1.1.10. (i) Consider (Ω,P (Ω)) for an arbitrary set Ω and define
µ(A) as the number of elements in A whenever A is a finite subset and
µ(A) =∞ otherwise. Then µ is a measure on (Ω,P (Ω)).
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(ii) Let Ω be an arbitrary non-empty set and a ∈Ω. Define

δa : P (Ω)→R≥0

A 7→

1 if a ∈ A
0 else

.

Then δa is a measure on (Ω,P (Ω)) and is called the Dirac measure in a.

We now come to the most important example for our purposes.

Theorem 1.1.11 (Lebesgue Measure). Let n ∈N. There exists a unique Borel
measure λ, i.e. a measure defined on (Rn,B(Rn)), that satisfies

λ([a1,b1)× · · · [an,bn)) =
n∏
k=1

(bk − ak)

for all products with ai < bi . The measure λ is called the Lebesgue measure on
R
n.

Of course, one can also restrict the Lebesuge measure to (Ω,B(Ω)) for
subsets Ω ⊂ R

n. The uniqueness in the above theorem is not trivial, but
essentially follows from the fact that the products of half-open intervals used
in the above definition generate the Borel-σ -algebra and are closed under finite
intersections. The existence is usually proved via Carathéodory’s extension
theorem.

1.2 The Lebesgue Integral

Given a measure space (Ω,Σ,µ), one can integrate certain functions f : Ω→C

over the measure µ. One extends the integral step by step to more general
classes of functions. A function f : Ω→ C is a simple function if there exist
finite measurable setsA1, . . . ,An ∈ Σ and a1, . . . , an ∈C such that f =

∑n
k=1 ak1Ak .

Here 1Ak is the function defined by

1Ak (x) =

1 if x ∈ Ak
0 if x < Ak

.

Definition 1.2.1 (Lebesgue integral). Let (Ω,Σ,µ) be a measure space.

(i) For a simple function f : Ω→R≥0 given by f =
∑n
k=1 ak1Ak as above one

defines the Lebesgue integral as∫
Ω

f dµ =
n∑
k=1

akµ(Ak).
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1. A Crash Course in Measure Theory

(ii) For a measurable function f : Ω→R≥0 the Lebesgue integral is defined
as ∫

Ω

f dµ = sup
g simple:
0≤g≤f

∫
Ω

g dµ.

(iii) A general measurable function f : Ω→ C can be uniquely decomposed
into for non-negative measurable functions f : Ω→ R≥0 such hat f =
(f1− f2)+ i(f3− f4). One says that f is integrable if

∫
Ω
fi dµ <∞ and writes

f ∈ L1(Ω,Σ,µ). In this case one sets the Lebesgue integral as∫
Ω

f dµ =
∫
Ω

f1dµ−
∫
Ω

f2dµ+ i
(∫

Ω

f3dµ−
∫
Ω

f4dµ

)
.

Moreover, for a measurable set A ∈ Σ we use the short-hand notation∫
A
f dµB

∫
Ω

1Af dµ

whenever the integral on the right hand side exists.

We will often use the following terminology. Let (Ω,Σ,µ) be a measure
space and P (x) a property for every x ∈ Ω. We say that P holds almost
everywhere if there exists a set N ∈ Σ with µ(N ) = 0 such that P (x) holds for
all x < N . For example, on (R,B(R),λ) the function f (x) = cos(πx) satisfies
|f (x)| < 1 almost everywhere because one can choose N = Z which has zero
Lebesgue measure. In the following we will often make use of that the fact
that the integrals over two measurable functions f and g agree whenever
f (x) = g(x) almost everywhere.

Notice that we can now integrate a function f : [a,b]→C in two different
ways by either using the Riemann or the Lebesgue integral. These two inte-
grals however agree as soon as both make sense and the Lebesgue integral can
be considered as a true extension of the Riemann integral (except for some
minor measurability issues).

Theorem 1.2.2 (Lebesgue integral equals Riemann integral). The Riemann
and Lebesgue integral have the following properties.

(a) Let f : [a,b] → C be a Riemann integrable function. Then there exists
a measurable function g : [a,b] → C with f = g almost everywhere and
g ∈ L1([a,b],B([a,b]),λ). Moreover, one has∫ b

a
f (x)dx =

∫
[a,b]

g dλ.
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1.2. The Lebesgue Integral

(b) Let f : I →C for some interval I ⊂R be Riemann integrable in the improper
sense. If

sup
K⊂I

compact interval

∫
K
|f (x)|dx <∞,

then there exists a measurable function g : I →C with f = g almost every-
where and g ∈ L1(I,B(I),λ). Moreover, one has∫

I
f (x)dx =

∫
I
g dλ.

Moreover, if f is measurable (for example if f is continuous), one can choose g
equal to f .

For an example of a Lebesgue-integrable function which is not Riemann-
integrable, consider f (x) = 1[0,1]∩Q(x). Then f is not Riemann-integrable as
on arbitrary fine partitions of [0,1] the function takes both values 0 and 1,
whereas the Lebesgue integral can be easily calculated as

∫
[0,1] f dλ = λ([0,1]∩

Q) = 0.
Now suppose that one has given a sequence fn : Ω → C of measurable

functions such that limn→∞ fn(x) exists almost everywhere. Hence, there
exists a measurable set N with µ(N ) = 0 such that the limit exists for all x <N .
We now set

f (x) =

limn→∞ fn(x) if this limit exists,

0 else.

One can show that the set C of all x ∈ Ω for which the above limit exists
is measurable. It follows easily from this fact the function f : Ω → C is
measurable as well. Note further that because of C ⊂ N one has µ(C) = 0.
Hence, the Lebesgue integral of f is independent of the concrete choice of
the values at the non-convergent points and therefore the choice does not
matter for almost all considerations. We make the agreement that we will
always define the pointwise limit of measurable functions in the above way
whenever the limit exists almost everywhere. This is particularly useful for the
formulation of the following convergence theorems for the Lebesgue integral.

Theorem 1.2.3 (Monotone convergence theorem). Let (Ω,Σ,µ) be a measure
space and fn : Ω→ R a sequence of measurable functions with fn+1(x) ≥ fn(x) ≥
0 almost everywhere. Suppose further that f (x) = limn→∞ fn(x) exists almost
everywhere. Then

lim
n→∞

∫
Ω

fndµ =
∫
Ω

f dµ.
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1. A Crash Course in Measure Theory

Note that the monotonicity assumption is crucial for the theorem. In fact,
in general one cannot switch the order of limits and integrals as the following
example shows.

lim
n→∞

∫
R

1[n,n+1]dλ = 1 , 0 =
∫
Ω

lim
n→∞

1[n,n+1]dλ.

However, the following result holds for non-positive and non-monotone
sequences of functions.

Theorem 1.2.4 (Dominated convergence theorem). Let (Ω,Σ,µ) be a measure
space and fn : Ω→ C a sequence of measurable functions for which there exists an
integrable function g : Ω→R such that for all n ∈N one has |fn(x)| ≤ g(x) almost
everywhere. Further suppose that f (x) = limn→∞ fn(x) exists almost everywhere.
Then

lim
n→∞

∫
Ω

fndµ =
∫
Ω

f dµ.

For the next result we need a finiteness condition on the underlying
measure space.

Definition 1.2.5 (σ-finite measure space). A measure space (Ω,Σ,µ) is called
σ -finite if there exists a sequence of measurable sets (An)n∈N ⊂ Σ such that
µ(An) <∞ for all n ∈N and

Ω =
∞⋃
n=1

An.

For example, (N,P (N)) together with the counting measure or the measure
spaces (Rn,B(Rn),λ) for n ∈N, where λ denotes the Lebesgue measure, are
σ -finite. Moreover, every finite measure space and a fortiori every probability
space is σ -finite. For an example of a non-σ -finite measure space consider
(R,P (R)) with the counting measure.

Definition 1.2.6 (Products of measure spaces). Consider the two measure
spaces (Ω1,Σ1,µ1) and (Ω2,Σ2,µ2).

(i) The σ -algebra on Ω1 ×Ω2 generated by sets of the form A1 × A2 for
Ai ∈ Σi (i = 1,2) (i.e. the smallest σ -algebra that contains these sets) is
called the product σ -algebra of Σ1 and Σ2 and is denoted by Σ1 ⊗Σ2.

(ii) A measure µ on the measurable space (Ω1 ×Ω2,Σ1 ⊗ Σ2) is called a
product measure of µ1 and µ2 if

µ(A1 ×A2) = µ1(A1) ·µ2(A2) for all A1 ∈ Σ1,A2 ∈ Σ2.

Here we use the convention that 0 ·∞ =∞· 0 = 0.
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1.2. The Lebesgue Integral

For example, one has B(Rn)⊗B(Rm) = B(Rn+m) which can be easily verified
using the fact that products of half-open intervals generate B(Rn). It follows
from the characterizing property of the Lebesgue measure λn on (Rn,B(Rn))
that for all n,m ∈N the measure λn+m is a product measure of λn and λm. One
can show that there always exists a product measure for two arbitrary measure
spaces. In most concrete situations there exists a uniquely determined product
measure as the following theorem shows.

Theorem 1.2.7. Let (Ω1,Σ1,µ1) and (Ω2,Σ2,µ2) be two σ -finite measure spaces.
Then there exists a unique product measure on (Ω1×Ω2,Σ1⊗Σ2) which is denoted
by µ1 ⊗µ2.

It is now a natural question how integration over product measures is
related to integration over the single measures. An answer is given by Fubini’s
theorem.

Theorem 1.2.8 (Fubini–Tonelli theorem). Let (Ω1,Σ1,µ1) and (Ω2,Σ2,µ2) be
two σ -finite measure spaces and f : (Ω1×Ω2,Σ1⊗Σ2)→C a measurable function.
Then the functions

y 7→
∫
Ω1

f (x,y)dµ1(x) and x 7→
∫
Ω2

f (x,y)dµ2(y)

are measurable functions Ω2→C respectively Ω1→C. If one of the three integrals∫
Ω1

∫
Ω2

|f (x,y)|dµ2(y)dµ1(x),
∫
Ω2

∫
Ω1

|f (x,y)|dµ1(x)dµ2(y) or∫
Ω1×Ω2

|f (x,y)|dµ1 ⊗µ2(x,y)

is finite, then one has for the product and iterated integrals∫
Ω1×Ω2

f (x,y)d(µ1 ⊗µ2)(x,y) =
∫
Ω1

∫
Ω2

f (x,y)dµ2(y)dµ1(x)

=
∫
Ω2

∫
Ω1

f (x,y)dµ1(x)dµ2(y).

Moreover, if f is a non-negative function, one can omit the finiteness assumption
on the integrals and the conclusion is still valid (in this case all integrals can be
infinite).

Note that there are also variants of Fubini’s theorem (not in the above gen-
erality) for non σ -finite measure spaces. However, this case is more technical
and rarely used in practice and therefore we omit it.
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1. A Crash Course in Measure Theory

1.3 Lebesgue Spaces

We now come back to the motivation at the beginning of this chapter. After
our preliminary work we can now define L2(R) or more generally Lp(Ω) over
an arbitrary measure space (Ω,Σ,µ).

Definition 1.3.1 (Lp-spaces). Let (Ω,Σ,µ) be a measure space. For p ∈ [1,∞)
we set

Lp(Ω,Σ,µ)B
{
f : Ω→K measurable :

∫
Ω

|f |p dµ <∞
}
,

‖f ‖p B
(∫

Ω

|f |p dµ
)1/p

.

For p =∞ we set

L∞(Ω,Σ,µ)B {f : Ω→K measurable : ∃C ≥ 0 : |f (x)| ≤ C alm. everywhere}.
‖f ‖∞ B inf{C ≥ 0 : |f (x)| ≤ C almost everywhere}.

Note that the space L1(Ω,Σ,µ) agrees with the space L1(Ω,Σ,µ) previ-
ously defined in Definition 1.2.1. One can show that (Lp(Ω,Σ,µ),‖·‖p) is a
semi-normed vector space, i.e. ‖·‖p satisfies all axioms of a norm except for def-
initeness. Here, the validity of the triangle inequality, the so-called Minkowski
inequality, is a non-trivial fact. If one identifies two functions whenever they
agree almost everywhere, one obtains a normed space.

Definition 1.3.2 (Lp-spaces). Let (Ω,Σ,µ) be a measure space and p ∈ [1,∞].
The space Lp(Ω,Σ,µ) is defined as the space Lp(Ω,Σ,µ) with the additional
agreement that two functions f ,g : Ω → K are identified with each other
whenever f − g = 0 almost everywhere.

As a consequence of the above identification (Lp(Ω,Σ,µ),‖·‖p) is a normed
vector space. In contrast to the variant using the Riemann integral these
spaces are complete.

Definition 1.3.3 (Banach space). A normed vector space which is complete
with respect to the given norm is called a Banach space.

Recall that a normed vector space or more generally a metric space is called
complete if every Cauchy sequence converges to an element in the space. A
sequence (xn)n∈N in a normed vector space (V ,‖·‖) is called a Cauchy sequence
if for all ε > 0 there exists n0 ∈ N such that ‖xn − xm‖ ≤ ε for all n,m ≥ n0.
Using this terminology we have

Theorem 1.3.4 (Riesz–Fischer). Let (Ω,Σ,µ) be a measure space and p ∈ [1,∞].
Then Lp(Ω,Σ,µ) is a Banach space.
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1.3. Lebesgue Spaces

Let (fn)n∈N be a sequence in Lp(Ω,Σ,µ) with fn→ f in Lp. One often says
that fn converges to f in the p-th mean which gives the right visual interpre-
tation for convergence in Lp-spaces. Note that the sequence 1[0,1], 1[0,1/2],
1[1/2,1], 1[0,1/4], 1[1/4,1/2] and so on converges in Lp([0,1]) for all p ∈ [1,∞) to
the zero function although fn(x) diverges for all x ∈ [0,1]. Conversely, point-
wise convergence in general does not imply convergence in Lp. For example,
the sequence fn = 1[n,n+1] does not converge in Lp(R) although fn(x)→ 0 for
all x ∈ R. In concrete situations one can often infer Lp-convergence from
pointwise convergence with the help of the dominated convergence theorem.
In the opposite direction one has the following useful result which actually
follows directly from the proof of the Riesz–Fischer theorem.

Proposition 1.3.5. Let (Ω,Σ,µ) be a measure space and p ∈ [1,∞). Further
suppose that fn→ f in Lp(Ω,Σ,µ). Then there exist a subsequence (fnk )k∈N and
g ∈ Lp(Ω,Σ,µ) such that

(a) fnk (x)→ f (x) almost everywhere;

(b) |fnk (x)| ≤ |g(x)| for all n ∈N almost everywhere.

We will later need some further properties of Lp-spaces. The following
result is natural, but needs some effort to be proven rigorously.

Proposition 1.3.6. Let Ω ⊂R
n be open and p ∈ [1,∞). Then Cc(Ω), the space of

all continuous functions on Ω with compact support (in Ω), is a dense subspace of
Lp(Ω).

The Cauchy–Schwarz inequality for L2-spaces generalizes to Hölder’s
inequality in the Lp-setting. In the following we use the agreement 1/∞ = 0.

Proposition 1.3.7 (Hölder’s inequality). Let (Ω,Σ,µ) be a measure space. Fur-
ther let p ∈ [1,∞] and q ∈ [1,∞] be its dual index given by 1

p + 1
q = 1. Then for

f ∈ Lp(Ω,Σ,µ) and g ∈ Lq(Ω,Σ,µ) the product f ·g lies in L1(Ω,Σ,µ) and satisfies∫
Ω

|f g |dµ ≤
(∫

Ω

|f |p dµ
)1/p (∫

Ω

|g |q dµ
)1/q

.

As an important and direct consequence of Hölder’s inequality one has
the following inclusions between Lp-spaces.

Proposition 1.3.8. Let (Ω,Σ,µ) be a finite measure space, i.e. µ(Ω) <∞. Then
for p ≥ q ∈ [1,∞] one has the inclusion

Lp(Ω,Σ,µ) ⊂ Lq(Ω,Σ,µ).

11



1. A Crash Course in Measure Theory

Proof. We only deal with the case p ∈ (1,∞) (the other cases are easy to show).
It follows from Hölder’s inequality because of p/q ≥ 1 that(∫

Ω

|f |q dµ
)1/q

=
(∫

Ω

|f |q1dµ
)1/q

≤
(∫

Ω

|f |p dµ
)1/p (∫

Ω

1dµ

)(1−q/p)·1/q

= µ(Ω)1/q−1/p
(∫

Ω

|f |p dµ
)1/p

.

A second application of Hölder’s inequality is the next important estimate
on convolutions of two functions.

Definition 1.3.9. Let f ,g ∈ L1(Rn). We define the convolution of f and g by

(f ∗ g)(x) =
∫
R
n
f (y)g(x − y)dy.

Note that it is not clear that f ∗ g exists under the above assumptions. This
is indeed the case as the following argument shows. Note that the function
(x,y) 7→ f (y)g(x − y) is measurable as a map R

2n → R by the definition of
product σ -algebras and the fact that the product and the composition of
measurable functions is measurable. It follows from Fubini’s theorem that
the function x 7→ (f ∗ g)(x) is measurable and satisfies∫

R
n
|f ∗ g | (x)dx ≤

∫
R
n

∫
R
n
|f (y)||g(x − y)|dy dx =

∫
R
n
|f (y)|

∫
R
n
|g(x − y)|dxdy

=
∫
R
n
|f (y)|

∫
R
n
|g(x)|dxdy = ‖f ‖1 ‖g‖1 .

Hence, the function f ∗ g is finite almost everywhere. Moreover, we have
shown that f ∗ g ∈ L1(Rn) and that the pointwise formula in the definition
holds with finite values almost everywhere after taking representatives.

Proposition 1.3.10 (Minkowski’s inequality for convolutions). For some p ∈
[1,∞] let g ∈ Lp(Rn) and f ∈ L1(Rn). Then one has

‖f ∗ g‖p ≤ ‖f ‖1 ‖g‖p .

Proof. We only deal with the cases p ∈ (1,∞) as the boundary cases are simple
to prove. We apply Hölder’s inequality to the functions |g(x− y)| and 1 for the
measure µ = |f (y)|dy (i.e. µ(A) =

∫
A
|f (y)|dy) and obtain

|(f ∗ g)(x)| ≤
(∫

R
n
|g(x − y)|p|f (y)|dy

)1/p (∫
R
n
|f (y)|dy

)1/q

,

12
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where 1/p + 1/q = 1. Taking the Lp-norm in the above inequality, we obtain
the desired inequality

‖f ∗ g‖p ≤
(∫

R
n

∫
R
n
|g(x − y)|p|f (y)|dy ‖f ‖p/q1 dx

)1/p

= ‖f ‖1/q1

(∫
R
n
|f (y)|

∫
R
n
|g(x − y)|p dxdy

)1/p

= ‖f ‖1/q1 ‖f ‖
1/p
1 ‖g‖p

= ‖f ‖1 ‖g‖p .
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