Structural Properties of Maximal Regularity

Stephan Fackler

Institute of Applied Analysis, University of Ulm

Workshop on Functional Calculus and Harmonic Analysis of Semigroups (Université de Franche–Comté) -A generator of bounded analytic C₀-semigroup on Banach space X

Definition (Maximal Regularity)

A has maximal regularity if $s \mapsto isR(is, A)$ ($s \neq 0$) defines a bounded Fourier multiplier on $L_p(\mathbb{R}; X)$ for one (equiv. all) $p \in (1, \infty)$.

- Always true if X is a Hilbert space (use Plancherel's theorem)
- L. Weis: characterization in terms of *R*-boundedness of {*isR*(*is*, *A*) : *s* ≠ 0} on UMD-spaces
- A bounded H[∞]-calculus with ω_{H[∞]}(A) < π/2 implies maximal regularity of A if X is UMD

Non-trivial positive result for maximal regularity

Theorem (L. Weis)

-A generator of bounded analytic semigroup on L_p -space for $p \in (1, \infty)$ that is positive and contractive on the real line. Then A has maximal regularity.

- Generalizes to $\|T(t)\|_r \leq 1$ for $t \geq 0$ ($\|\cdot\|_r$ regular norm)
- Seems to be the only generic positive result known

One may ask for possible generalizations:

Problem

-A generator of bounded analytic semigroup on L_p -space for $p \in (1, \infty)$ that is positive and contractive on the real line. Does A have maximal regularity?

Problem

-A generator of bounded analytic semigroup on L_p -space for $p \in (1, \infty)$ that is positive and contractive on the real line. Does A have maximal regularity?

These questions are the motivating forces.

We do not know an answer to both questions. One may even generalize further:

Problem

-A generator of bounded analytic semigroup on a uniformly convex UMD-space that is contractive on the real line. Does A have maximal regularity?

Problem

-A generator of bounded analytic semigroup on a UMD Banach lattice that is positive on the real line. Does A have maximal regularity?

Theorem (C. Arhancet, S. F., C. Le Merdy)

A sectorial with bounded H^{∞} -calculus and $\omega_{H^{\infty}}(A) < \frac{\pi}{2}$ on super-reflexive space X, $-A \sim (T(z))$. There exists an equivalent uniformly convex norm $\|\cdot\|$ on X such that

 $\|T(t)\| \leq 1 \qquad \forall t \geq 0.$

• X super-reflexive \iff X has equivalent uniformly convex norm (P. Enflo).

Theorem (C. Arhancet, S. F., C. Le Merdy)

A sectorial with bounded H^{∞} -calculus and $\omega_{H^{\infty}}(A) < \frac{\pi}{2}$ on super-reflexive space X, $-A \sim (T(z))$. There exists an equivalent uniformly convex norm $\|\cdot\|$ on X such that

 $\|T(t)\| \leq 1 \qquad \forall t \geq 0.$

• X super-reflexive \iff X has equivalent uniformly convex norm (P. Enflo).

Problem

-A generator of contractive semigroup on uniformly convex space. Does A have a bounded H^{∞} -calculus?

Theorem (S. F.)

Let $p \neq p \in (1, \infty)$. There exists a sectorial operator A on $\ell_p(\ell_q)$ with $\omega(A) = 0, -A \sim (T(z))$, and $T(t) \geq 0$ for all $t \geq 0$ such that A does not have maximal regularity.

Positivity is not sufficient on general UMD Banach lattices!

Typical approach to construct counterexamples (Schauder multiplier approach):

- $(f_m)_{m\in\mathbb{N}}$ wisely chosen bad Schauder basis for X
- $(\gamma_m)_{m\in\mathbb{N}}$ sequence of positive non-decreasing real numbers

$$D(A) = \left\{ x = \sum_{m=1}^{\infty} a_m f_m : \sum_{m=1}^{\infty} \gamma_m a_m f_m \text{ exists} \right\}$$
$$A\left(\sum_{m=1}^{\infty} a_m f_m\right) = \sum_{m=1}^{\infty} \gamma_m a_m f_m$$

-A generates analytic semigroup $(T(z))_{z \in \Sigma_{\frac{\pi}{2}}}$.

Our choices for $X_p = (\bigoplus_{n=1}^{\infty} \ell_2^n)_{\ell_p}$ for $p \in [2, \infty)$

• $(e_m)_{m\in\mathbb{N}}$ standard basis of X_p seen as sequence space

$$f_m = egin{cases} e_m & m ext{ odd} \ e_{m-1} + e_{\pi(m)} & m ext{ even} \end{cases}$$

 π permutation of even numbers with $[(e_{\pi(4m+2)})] \simeq \ell_p$ and $[e_{\pi(4m)}] \simeq X_p$.

• $(\gamma_m)_{m\in\mathbb{N}}$ given by $\gamma_1=1$ and further recursively by

1

$$c_m = \frac{\gamma_{m+1} - \gamma_m}{\gamma_m}$$

for sequence $(c_m)_{m\in\mathbb{N}}$ with $c_m \in (0,1)$.

 $(c_m)_{m\in\mathbb{N}}$ is the relative growth of $(\gamma_m)_{m\in\mathbb{N}}$.

$$c_m = \frac{\gamma_{m+1} - \gamma_m}{\gamma_m}$$

Example $\gamma_m = p(m)$ for p polynomial of degree n. Then $c_m \sim \frac{n}{m}$.

Example

 $\gamma_m = 2^m$. Then

$$c_m = 1.$$

$$X_p = (\oplus_{n=1}^\infty \ell_2^n)_{\ell_p} ext{ for } p \in [2,\infty)$$
 $rac{1}{p} + rac{1}{q} = rac{1}{2}$

Theorem (S. F.)

(c_m)_{m∈ℕ} eventually non-increasing. TFAE:
(i) A has maximal regularity
(ii) A has a bounded H[∞]-calculus
(iii) (c_m)_{m∈ℕ} ∈ (⊕[∞]_{n=1}ℓⁿ_q)_{ℓ∞}

•
$$p = 2$$
: $(\bigoplus_{n=1}^{\infty} \ell_q^n)_{\ell_{\infty}} = \ell_{\infty}$
• Limit case $p = \infty$: $(\bigoplus_{n=1}^{\infty} \ell_q^n)_{\ell_{\infty}} = (\bigoplus_{n=1}^{\infty} \ell_2^n)_{\ell_{\infty}}$

In this case maximal regularity is completely understood!

Interesting sequences $c_m = m^{-\alpha}$ for $\alpha \in (0, 1)$. Associated $(\gamma_m)_{m \in \mathbb{N}}$ have sub-exponential but super-polynomial growth.

Corollary (S. F.)

Let $I \subset (1, \infty)$ be an interval with $2 \in I$. There exists a family $(T_p(z))_{z \in \Sigma_{\frac{\pi}{2}}}$ of consistent C_0 -semigroups on $L_p(\mathbb{R})$ for $p \in (1, \infty)$ with

 $(T_p(z))$ has maximal regularity $\iff p \in I$.

The extrapolation problem for maximal regularity behaves in the worst way possible.

$$X_{p}=(\oplus_{n=1}^{\infty}\ell_{2}^{n})_{\ell_{p}}$$
 for $p\geq 2$

What happens with contractivity?

p = 2 (Hilbert space case): always contractive
 p = ∞: (X_∞ = (⊕[∞]_{n=1}ℓⁿ₂)_{c₀})

$$(c_m)
ot\in (\oplus_{n=1}^{\infty} \ell_2^n)_{\ell_{\infty}} \Rightarrow -A \sim (T(t))$$
 not contractive

(compare with Lamberton's result)

 p ∈ (2,∞): I do not know, but canonical choices give non-contractive semigroups, so one may wonder

$$(c_m) \notin (\oplus_{n=1}^{\infty} \ell_q^n)_{\ell_{\infty}} \Rightarrow -A \sim (T(t))$$
 not contractive?

Thank you for your attention!