Maximal Regularity does not extrapolate

Stephan Fackler

Institute of Applied Analysis, University of Ulm

Operator Semigroups meet Complex Analysis, Harmonic Analysis and Mathematical Physics (Herrnhut) Setting: -A generator of C_0 -semigroup $(T(t))_{t\geq 0}$ on Banach space X.

Definition

-A has maximal regularity if for $f \in L^p((0, T); X)$ the mild solution $u(t) = \int_0^t T(t-s)f(s) \, ds$ of

$$\begin{cases} \dot{u}(t) + Au(t) &= f(t) \\ u(0) &= 0 \end{cases}$$

satisfies $u \in W^{1,p}((0, T); X) \cap L^p((0, T); D(A))$.

The connection with harmonic analysis

1 Differentiation:
$$u'(t) = -\int_0^t AT(t-s)f(s) ds + f(t)$$

maximal regularity \Leftrightarrow boundedness of conv. with $||AT(t)|| \sim \frac{1}{t}$

Ø Fourier transform: we need boundedness of Fourier multiplier

$$m(u) \coloneqq \mathcal{F}(-AT(t)) = -AR(iu, -A) = iuR(iu, -A) - \mathsf{Id}$$

The connection with harmonic analysis

O Differentiation:
$$u'(t) = -\int_0^t AT(t-s)f(s) ds + f(t)$$

maximal regularity \Leftrightarrow boundedness of conv. with $||AT(t)|| \sim \frac{1}{t}$

Ø Fourier transform: we need boundedness of Fourier multiplier

$$m(u) \coloneqq \mathcal{F}(-AT(t)) = -AR(iu, -A) = iuR(iu, -A) - \mathsf{Id}$$

3 X = H Hilbert space, $(T(t))_{t \ge 0}$ bounded holomorphic (on sector):

||iuR(iu, -A)|| bounded.

Use (operator-valued) Mihlin's multiplier theorem $\Rightarrow -A$ has maximal regularity (De Simon).

$\mathcal{R} ext{-boundedness}$ and multipliers

Problem: Operator-valued Mihlin characterizes Hilbert spaces (G. Pisier).

Theorem (L. Weis)

X UMD-space, $m \in C^1(\mathbb{R} \setminus \{0\}, B(X))$, $p \in (1, \infty)$. Assume that

 $\{m(t): t \in \mathbb{R} \setminus \{0\}\}$ and $\{tm'(t): t \in \mathbb{R} \setminus \{0\}\}$

are \mathcal{R} -bounded. Then $Tf = \mathcal{F}^{-1}(m(\cdot)\hat{f}(\cdot))$ extends to $T \in \mathcal{B}(L^p(X))$.

$\mathcal R\text{-}\mathsf{boundedness}$ and multipliers

Problem: Operator-valued Mihlin characterizes Hilbert spaces (G. Pisier).

Theorem (L. Weis)

X UMD-space, $m \in C^1(\mathbb{R} \setminus \{0\}, B(X))$, $p \in (1, \infty)$. Assume that

$$\{m(t):t\in\mathbb{R}\setminus\{0\}\}$$
 and $\{tm'(t):t\in\mathbb{R}\setminus\{0\}\}$

are \mathcal{R} -bounded. Then $Tf = \mathcal{F}^{-1}(m(\cdot)\hat{f}(\cdot))$ extends to $T \in \mathcal{B}(L^p(X))$.

- X UMD: Hilbert transform bounded in $L^p(X)$ $(p \in (1, \infty))$.
- \mathcal{R} -boundedness: $r_k(t) = \operatorname{sign} \sin(2^k \pi t)$ realization of Rademachers

$$\left\|\sum_{k=1}^{n} r_{k} m(t_{k}) x_{k}\right\|_{L^{p}([0,1];X)} \leq C \left\|\sum_{k=1}^{n} r_{k} x_{k}\right\|_{L^{p}([0,1];X)}$$

-A generator of bounded holomorphic C_0 -semigroup on X.

 $\{itR(it, -A) : t \in \mathbb{R} \setminus \{0\}\} \mathcal{R}$ -bounded $\Leftrightarrow \{T(z) : z \in \Sigma_{\delta}\} \mathcal{R}$ -bounded.

Theorem (L. Weis)

(i) -A has maximal regularity \Rightarrow { $T(z) : z \in \Sigma_{\delta}$ } \mathcal{R} -bounded.

(ii) If X is UMD, then the converse holds.

The maximal regularity problem

- -A has maximal regularity \Rightarrow -A generates holomorphic C₀-semigroup on X.
- X = H Hilbert space: −A has maximal regularity ⇔ −A generates holomorphic C₀-semigroup.

Problem (Maximal regularity problem)

Which Banach spaces have this property (MRP)?

The maximal regularity problem

- A has maximal regularity ⇒ -A generates holomorphic C₀-semigroup on X.
- X = H Hilbert space: −A has maximal regularity ⇔ −A generates holomorphic C₀-semigroup.

Problem (Maximal regularity problem)

Which Banach spaces have this property (MRP)?

- $L^{\infty}[0,1]$ has (MRP).
- Kalton-Lancien: (MRP) characterizes Hilbert spaces in the class of Banach spaces with an unconditional basis.

- Kalton & Lancien use abstract results on perfectly homogeneous bases.
- No explicit counterexample has been known on $L^p[0,1]$ $(p \in (1,\infty) \setminus \{2\}).$

Definition

A sequence $(e_n)_{n\in\mathbb{N}}\subset X$ is called *Schauder basis* if every $x\in X$ has a unique expansion

$$x = \sum_{n=1}^{\infty} a_n e_n.$$
 $(a_n \in \mathbb{C})$

If the above series converge unconditionally, $(e_n)_{n\in\mathbb{N}}$ is called an *unconditional basis*.

For $\gamma_{n+1} \geq \gamma_n$, -A generates a holomorphic C_0 -semigroup, where

$$A\left(\sum_{n=1}^{\infty}a_ne_n\right)=\sum_{n=1}^{\infty}\gamma_na_ne_n.$$

We use: $\gamma_n = 2^n$.

An explicit counterexample

X ≠ l¹, l², c₀: There exist a normalized unconditional basis (ẽ_n)_{n∈ℕ} of X, a permutation π : ℕ → ℕ and (a_n)_{n∈ℕ} ⊂ ℂ with

$$\sum_{n=1}^{\infty} a_n \tilde{e}_{\pi(2n)} \text{ exists, but } \sum_{n=1}^{\infty} a_n \tilde{e}_{2n-1} \text{ does not (or vice versa).}$$

•
$$f_n = \begin{cases} \tilde{e}_n, & n \text{ odd} \\ \tilde{e}_{\pi(n)} + \tilde{e}_{n-1}, & n \text{ even} \end{cases}$$
 is Schauder basis for X.

We take

$$A\left(\sum_{n=1}^{\infty}a_nf_n\right)=\sum_{n=1}^{\infty}2^na_nf_n.$$

An explicit counterexample

- $g := \sum_{n=1}^{\infty} r_n a_n \tilde{e}_{\pi(2n)}$ converges (unconditionality).
- \mathcal{R} -boundedness of $\{T(t): t \in [0,1]\}$ would imply boundedness of

$$\mathcal{T}:\sum_{n=1}^{\infty}r_nx_n\mapsto\sum_{n=1}^{\infty}r_nT(q_n)x_n$$

on closed span of Rademachers for $(q_n)_{n\in\mathbb{N}}\subset [0,1]$.

An explicit counterexample

- $g \coloneqq \sum_{n=1}^{\infty} r_n a_n \tilde{e}_{\pi(2n)}$ converges (unconditionality).
- \mathcal{R} -boundedness of $\{T(t): t \in [0,1]\}$ would imply boundedness of

$$\mathcal{T}:\sum_{n=1}^{\infty}r_nx_n\mapsto\sum_{n=1}^{\infty}r_nT(q_n)x_n$$

on closed span of Rademachers for $(q_n)_{n \in \mathbb{N}} \subset [0, 1]$. • Take $q_n = \frac{\log 2}{2^{2n-1}}$. Short calculation:

$$\mathcal{T}(g) = \frac{1}{4} \sum_{n=1}^{\infty} a_n r_n \tilde{e}_{\pi(2n)} - a_n r_n \tilde{e}_{2n-1}$$

Thus by unconditionality, $\sum_{n=1}^{\infty} a_n \tilde{e}_{2n-1}$ converges. Contradiction!

The case of L^p -spaces

$$X_p := (\oplus_{n=1}^\infty \ell_2^n)_{\ell^p}$$

is isomorphic to ℓ^p for $p \in (1, \infty)$ (variant of the Schröder-Bernstein argument, Pełczyński's decomposition technique).

- Use the unit standard basis $(\tilde{e}_n)_{n\in\mathbb{N}}$ for counterexamples.
- This can be done consistently in the X_p -scale (1 .
- Embed this in $L^{p}(\mathbb{R})$ consistently using Rademachers.

11 / 12

The case of L^p -spaces

$$X_p := (\oplus_{n=1}^\infty \ell_2^n)_{\ell^p}$$

is isomorphic to ℓ^p for $p \in (1, \infty)$ (variant of the Schröder-Bernstein argument, Pełczyński's decomposition technique).

- Use the unit standard basis $(\tilde{e}_n)_{n\in\mathbb{N}}$ for counterexamples.
- This can be done consistently in the X_p -scale (1 .
- Embed this in $L^{p}(\mathbb{R})$ consistently using Rademachers.

Theorem (SF (2012))

There exists a family $(T_p(t))_{t\geq 0}$ of consistent holomorphic C_0 -semigroups on $L^p(\mathbb{R})$ $(p \in (1, \infty))$ with

 $(T_p(t))_{t\geq 0}$ has maximal regularity $\Leftrightarrow p=2$.

Stephan Fackler (University of Ulm)

Extrapolation Maximal Regularity

Thank you for your attention!