Regularity of Semigroups via the Asymptotic Behaviour at Zero

Stephan Fackler

Institute of Applied Analysis, University of Ulm

8th Euro-Maghrebian Workshop on Evolution Equations

Warm-up: Holomorphic Semigroups

Definition

A semigroup $(T(t))_{t\geq 0}$ on a complex Banach space X is called *holomorphic* if it has a holomorphic extension to

$$\Sigma_{\phi} \coloneqq \{z \in \mathbb{C} \setminus \{0\} : | \arg z | < \phi\} \quad (\phi > 0)$$

which is bounded on

 $\Sigma_{\phi} \cap \{z \in \mathbb{C} : |z| \leq 1\}.$

A Classical Characterization via the Behaviour at Zero

Theorem (T. Kato)

Let $(T(t))_{t\geq 0}$ be a C₀-semigroup. Assume that

$$\limsup_{t\downarrow 0} \|T(t) - \mathsf{Id}\| < 2.$$

Then (T(t)) extends to a holomorphic semigroup.

A Classical Characterization via the Behaviour at Zero

Theorem (T. Kato)

Let $(T(t))_{t\geq 0}$ be a C₀-semigroup. Assume that

 $\limsup_{t\downarrow 0} \|T(t) - \mathsf{Id}\| < 2.$

Then (T(t)) extends to a holomorphic semigroup.

Theorem (A. Pazy)

Let $(T(z))_{z \in \Sigma}$ be a contractive holomorphic C_0 -semigroup on a uniformly convex Banach space X. Then

$$\limsup_{t\downarrow 0} \|T(t) - \mathsf{Id}\| < 2.$$

Stephan Fackler (University of Ulm)

The Gaussian semigroup

$$T(t)f(x) = \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} f(x-y) e^{-y^2/4t} \, dy$$

on $X = L^1(\mathbb{R})$ is contractive and holomorphic and satisfies

$$\limsup_{t\downarrow 0} \|T(t) - \mathsf{Id}\| = 2.$$

A Complete Characterization

Theorem

A C_0 -semigroup $(T(t))_{t\geq 0}$ is holomorphic if and only if there exists a polynomial P such that

$$\limsup_{t\downarrow 0} \|P(T(t))\| < \|P\|_D,$$

where $||P||_D \coloneqq \sup_{|z| \le 1} |P(z)|$.

A Complete Characterization

Theorem

A C_0 -semigroup $(T(t))_{t\geq 0}$ is holomorphic if and only if there exists a polynomial P such that

$$\limsup_{t\downarrow 0} \|P(T(t))\| < \|P\|_D,$$

where $||P||_D := \sup_{|z| \le 1} |P(z)|$.

In particular, for $P(z) = (z - 1)^N$ we obtain that the semigroup $(T(t))_{t \ge 0}$ is holomorphic if

$$\limsup_{t\downarrow 0} \left\| (T(t) - \mathsf{Id})^N \right\|^{1/N} < 2.$$

Open question: A generates (T(z)) holomorphic, C_0 . Is there always an $N \in \mathbb{N}$ with

$$\limsup_{t\downarrow 0} \left\| \left(\mathcal{T}(t) - \mathsf{Id} \right)^{N} \right\|^{1/N} < 2?$$

True if: X Hilbert space and generator A has bounded H^{∞} -calculus.

Application: Holomorphy Extrapolates

Theorem

- $(T_2(t))_{t\geq 0}$ and $(T_p(t))_{t\geq 0}$ two consistent semigroups on L^2 and L^p .
- $(T_2(t))_{t\geq 0}$ C_0 , holomorphic and $(T_p(t))_{t\geq 0}$ locally bounded.

Then: Induced semigroups $(T_q(t))$ on L^q are C_0 & holomorphic.

Application: Holomorphy Extrapolates

Theorem

(T₂(t))_{t≥0} and (T_p(t))_{t≥0} two consistent semigroups on L² and L^p.
(T₂(t))_{t>0} C₀, holomorphic and (T_p(t))_{t>0} locally bounded.

Then: Induced semigroups $(T_q(t))$ on L^q are C_0 & holomorphic.

Proof.

• \exists polynomial *P* of degree *n*, $\|P\|_D = 1$ and $\rho < 1$, $\delta > 0$ such that

$$\|P(T_2(t))\| \leq \rho \quad \text{for } 0 < t < \delta.$$

• Riesz-Thorin for θ with $\frac{1}{q} = \frac{\theta}{2} + \frac{1-\theta}{p}$ $(M \coloneqq \sup_{t \in [0,1]} \|\mathcal{T}_p(t)\|)$

$$\left\|P^{N}(T_{q}(t))\right\| \leq \left\|P^{N}(T_{2}(t))\right\|^{\theta} \left\|P^{N}(T_{p}(t))\right\|^{1-\theta} \leq \rho^{\theta N}(M(Nn+1))^{1-\theta}$$

The same proof works for more general interpolation methods of exponent $\theta \in (0, 1)$: Replace the L^2 and L^p by interpolation couple (X_1, X_2) of Banach spaces and L^q by real interpolation space $(X_1, X_2)_{\theta,q}$ for $\theta \in (0, 1)$ and $q \in [1, \infty)$.

Theorem (S.F.)

Let $(T(t))_{t\geq 0}$ be a strongly continuous semigroup on a Banach space X with $\mathcal{R} \{T(t) : 0 < t < 1\} < \infty$. Then (T(t)) is \mathcal{R} -analytic if and only if there exists a polynomial P such that

$$\lim_{\epsilon \downarrow 0} \mathcal{R} \left\{ P(T(t)) : 0 < t < \epsilon \right\} < \|P\|_D \,.$$

Theorem (S.F.)

- X_1 and X_2 B-convex.
- (T₁(t))_{t≥0} and (T₂(t))_{t≥0} two consistent semigroups on interpolation couple (X₁, X₂).
- \mathcal{F} interpolation functor of exponent $\theta \in (0, 1)$.
- $X = \mathcal{F}((X_1, X_2)).$
- $(T_1(t))_{t\geq 0}$ C_0 and \mathcal{R} -analytic.
- $\mathcal{R} \{ T_2(t) : 0 < t < 1 \} < \infty.$

Then: Interpolated semigroup $(T(z))_{z\in\Sigma}$ on X is \mathcal{R} -analytic.

Application: X_1 Hilbert space and $(T_2(t))$ has Gaussian estimates.

Application: Zero-Two Laws

Kato's characterization can be used to prove a zero-two law for C_0 -groups. Let $(U(t))_{t\in\mathbb{R}}$ be a C_0 -group with

$$\limsup_{t\downarrow 0} \|U(t) - \mathsf{Id}\| < 2.$$

Then (U(t)) is holomorphic, a fortiori immediately norm continuous. So

$$\|U(t) - \mathsf{Id}\| = \|U(-1)(U(t+1) - U(1))\| \xrightarrow[t \to 0]{} 0.$$

Kato's characterization can be used to prove a zero-two law for C_0 -groups. Let $(U(t))_{t\in\mathbb{R}}$ be a C_0 -group with

$$\limsup_{t\downarrow 0} \|U(t) - \mathsf{Id}\| < 2.$$

Then (U(t)) is holomorphic, a fortiori immediately norm continuous. So

$$\|U(t) - \mathsf{Id}\| = \|U(-1)(U(t+1) - U(1))\| \xrightarrow[t \to 0]{} 0.$$

Our generalization allows us to prove a 0-2 law for cosine families.

Definition

A cosine family C is a strongly continuous mapping $C : \mathbb{R} \to \mathcal{L}(X)$ satisfying C(0) = Id and 2C(t)C(s) = C(t+s) + C(t-s) $(t, s \in \mathbb{R})$.

A Zero-Two Law for Cosine Families

Theorem (S.F.)

Let $(C(t))_{t\in\mathbb{R}}$ be a cosine family on a UMD space X. Then

$$\limsup_{t\downarrow 0} \|C(t) - \mathsf{Id}\| \in \{0\} \cup [2,\infty).$$

A Zero-Two Law for Cosine Families

Theorem (S.F.)

Let $(C(t))_{t\in\mathbb{R}}$ be a cosine family on a UMD space X. Then

$$\limsup_{t\downarrow 0} \|C(t) - \mathsf{Id}\| \in \{0\} \cup [2,\infty).$$

Proof.

- Assume $\|C(t) \mathsf{Id}\| \le \rho$ for $\rho < 2$ and $t < \delta$.
- Fattorini: we may assume $C(t) = \frac{U(t)+U(-t)}{2}$, $(U(t))_{t\in\mathbb{R}}$ C₀-group.
- Let $P(z) = \frac{1}{2}(z-1)^2$. We estimate $\left\| P^N(U(t)) \right\|$ by

$$\|U(Nt)\|\left\|\left[\frac{U(t)+U(-t)}{2}-\mathsf{Id}\right]^{N}\right\|\leq (M^{1/N}e^{\omega t}\rho)^{N}\leq \tilde{\rho}^{N}<2^{N}.$$

Thus (U(t)) is norm continuous and $\lim_{t\downarrow 0} ||C(t) - Id|| = 0$.

- Arne Beurling. "On analytic extension of semigroups of operators". In: *J. Functional Analysis* 6 (1970).
- Stephan Fackler. "Regularity of Semigroups via the Asymptotic Behaviour at Zero". In: arXiv (2012). URL: http://arxiv.org/abs/1203.5498.
- Tosio Kato. "A characterization of holomorphic semigroups". In: *Proc. Amer. Math. Soc.* 25 (1970).

Thank you for your attention!

