On the structure of semigroups on L_p with a bounded H^∞ -calculus

Stephan Fackler

Institute of Applied Analysis, University of Ulm

Journées du GdR «Analyse Fonctionelle, Harmonique et Probabilités»

Notation:
$$\Sigma_{arphi} \coloneqq \{z \in \mathbb{C} : |\operatorname{arg}(z)| < arphi\}.$$

Definition (Sectorial Operator)

(A,D(A)) densely defined operator with $\omega\in(0,\pi)$ such that

$$(S_{\omega}) \qquad \sigma(A) \subset \overline{\Sigma_{\omega}} \qquad \text{and} \qquad \sup_{\lambda \notin \Sigma_{\omega+\varepsilon}} \|\lambda R(\lambda,A)\| < \infty \quad \forall \varepsilon > 0.$$

Then $\omega(A) \coloneqq \inf\{\omega : (S_{\omega}) \text{ holds}\}.$

Definition (Analytic C_0 -semigroup)

Family of operators $(T(z))_{z\in\Sigma_{\delta}}$ $(\delta\in(0,\frac{\pi}{2}))$ satisfying

(i)
$$z \mapsto T(z)$$
 is analytic
(ii) $T(z_1 + z_2) = T(z_1)T(z_2) \quad \forall z_1, z_2 \in \Sigma_{\delta}$
(iii) $\lim_{\substack{z \to 0 \\ z \in \Sigma_{\delta'}}} T(z)x = x \quad \forall \delta' \in (0, \delta), \forall x \in X$

It is called bounded if $\sup_{z \in \Sigma_{\delta'}} \|\mathcal{T}(z)\| < \infty$ for all $\delta' \in (0, \delta)$.

One has 1:1 correspondence

bounded analytic C_0 -semigroups $\leftrightarrow A$ sectorial with $\omega(A) < \frac{\pi}{2}$

At least formally $T(z) = e^{-zA}$.

Given
$$f \in H_0^{\infty}(\Sigma_{\sigma}) := \left\{ f : \Sigma_{\sigma} \to \mathbb{C} \text{ analytic} : |f(\lambda)| \le \frac{|\lambda|^{\varepsilon}}{(1+|\lambda|)^{2\varepsilon}} \right\}$$
 define
 $f(A) := \int_{\partial \Sigma_{\sigma'}} f(\lambda) R(\lambda, A) \, d\lambda \qquad (\omega(A) < \sigma' < \sigma).$

Definition (Bounded H^{∞} -calculus)

(A, D(A)) sectorial has bounded $H^{\infty}(\Sigma_{\sigma})$ -calculus if for some $C \geq 0$

$$(H_{\sigma}) ||f(A)|| \leq C \sup_{\lambda \in \Sigma_{\sigma}} |f(\lambda)| \forall f \in H_0^{\infty}(\Sigma_{\sigma}).$$

Then $\omega_{H^{\infty}}(A) := \inf\{\sigma : (H_{\sigma}) \text{ holds}\}.$

Theorem (C. Le Merdy)

 $-A \sim (T(z))_{z \in \Sigma}$ bounded analytic C₀-semigroup on Hilbert space H. Equivalent:

- (i) A has a bounded H^{∞} -calculus
- (ii) there exists $S \in \mathcal{B}(H)$ invertible such that

$$\left\|S^{-1}T(t)S\right\| \leq 1 \qquad \forall t \geq 0.$$

Put differently: contractive semigroups are generic for all semigroups with a bounded H^{∞} -calculus.

Can this be generalized to L_p (1 ? In one direction, one has

Theorem (L. Weis)

 $-A \sim (T(z))_{z \in \Sigma}$ bounded analytic C_0 -semigroup on L_p , positive and contractive on the real line. Then A has a bounded H^{∞} -calculus with $\omega_{H^{\infty}}(A) < \frac{\pi}{2}$.

Can all semigroups on L_p with a bounded H^{∞} -calculus be obtained from such semigroups?

Theorem (S.F.)

 $-A \sim (T(z))_{z \in \Sigma}$ bounded analytic C_0 -semigroup on $L_p(\Omega)$ (1 .Equivalent:

(i) A has a bounded H^{∞} -calculus with $\omega_{H^{\infty}}(A) < \frac{\pi}{2}$.

Theorem (S.F.)

 $-A \sim (T(z))_{z \in \Sigma}$ bounded analytic C_0 -semigroup on $L_p(\Omega)$ (1 .Equivalent:

- (i) A has a bounded H^{∞} -calculus with $\omega_{H^{\infty}}(A) < \frac{\pi}{2}$.
- (ii) There exists a bounded holomorphic C₀-semigroup (R(z))_{z∈Σ} in some L_p(Ω), positive and contractive on the real line with
 N ⊂ M ⊂ L_p(Ω) closed subspaces invariant unter (R(z))
 S ∈ B(L_p(Ω), M/N) isomorphism such that

$$T(z)=S^{-1}R_{M/N}(z)S \qquad orall z\in ilde{\Sigma}.$$

Theorem (S.F. (Reminder))

 $-A \sim (T(z))_{z \in \Sigma} \text{ bounded analytic } C_0 \text{-semigroup on } L_p(\Omega). \text{ Equivalent:}$ (i) A has a bounded H^{∞} -calculus with $\omega_{H^{\infty}}(A) < \frac{\pi}{2}.$ (ii) $T(z) = S^{-1}R_{M/N}(z)S \quad \forall z \in \tilde{\Sigma}.$

- On Hilbert spaces $\omega_{H^{\infty}}(A) < \frac{\pi}{2}$ holds automatically
- This seems to be open for L_p-spaces, but false for general subspaces of L_p-spaces (N.J. Kalton)
- (i) ⇒ (ii) holds on every UMD-Banach lattice ((R(z)) lives on another UMD-Banach lattice)

Problem

Does the result hold without factorizing through a subspace-quotient as in the Hilbert space case?

Problem

Does the result hold without factorizing through a subspace-quotient as in the Hilbert space case?

Problem

Can the constructed semigroup (R(z)) be chosen to be contractive on a whole sector as in the Hilbert space case?

Problem

Does the result hold without factorizing through a subspace-quotient as in the Hilbert space case?

Problem

Can the constructed semigroup (R(z)) be chosen to be contractive on a whole sector as in the Hilbert space case?

Problem

Does every positive contractive C_0 -semigroup on a UMD Banach lattice have a bounded H^∞ -calculus?

Main ideas of the proof (I):

• For $\alpha > 1$ give $H_0^{\infty}(\Sigma_{\frac{\pi}{2\alpha}+})$ a *p*-operator space structure as follows:

$$egin{aligned} & H^\infty(\Sigma_{rac{\pi}{2lpha}+}) \hookrightarrow \mathcal{B}(L_p(\mathbb{R};Y)) \ & f \mapsto f(B^{rac{1}{lpha}}), \end{aligned}$$

where -B generates the shift semigroup V(t)g(s) = g(s-t) on $L_p(\mathbb{R}; Y)$ for some vector-valued L_p -space Y.

Main ideas of the proof (I):

• For $\alpha > 1$ give $H_0^{\infty}(\Sigma_{\frac{\pi}{2\alpha}+})$ a *p*-operator space structure as follows:

$$\begin{aligned} H^{\infty}(\Sigma_{\frac{\pi}{2\alpha}+}) &\hookrightarrow \mathcal{B}(L_p(\mathbb{R};Y)) \\ f &\mapsto f(B^{\frac{1}{\alpha}}), \end{aligned}$$

- where -B generates the shift semigroup V(t)g(s) = g(s-t) on $L_p(\mathbb{R}; Y)$ for some vector-valued L_p -space Y.
- p-complete boundedness of the functional calculus, e.g. mappings

$$\mathcal{B}(\ell_p^n(H^{\infty}(\Sigma))) \supset M_n(H^{\infty}) \to M_n(\mathcal{B}(L_p(\mathbb{R};Y))) \simeq \mathcal{B}(\ell_p^n(L_p(\mathbb{R};Y)))$$
$$[f_{ij}] \mapsto [f_{ij}(B)]$$

are uniformly bounded in n.

Main ideas of the proof (II):

- A factorization theorem of G. Pisier yields a semigroup as asserted, except for strong continuity (ultraproduct construction).
- Reduce to the strongly continuous part.

Every bounded analytic C_0 -semigroup on $L_p(\Omega)$ with generator -A satisfying $\omega_{H^{\infty}}(A) < \frac{\pi}{2}$ can be obtained

- from a bounded analytic C_0 -semigroup on $L_p(\tilde{\Omega})$, positive and contractive on the real line
- after passing to invariant subspace-quotients and similarity transforms

Je vous remercie de votre attention.

Je vous remercie de votre attention.

Et bon appétit!