A stochastic characterization of maximal parabolic L^{p} -regularity

Stephan Fackler

Institute of Applied Analysis, University of Ulm

Workshop Probability, Analysis and Geometry (UIm)

Problem (MCF-equation)

We consider the mean curvature flow equation

$$(\mathsf{MCF}) \qquad \begin{cases} \partial_t u - \Delta u &= -\sum_{i,j=1}^n \frac{\partial_i u \partial_j u}{1 + |\nabla u|^2} \partial_i \partial_j u & \text{ in } (0,T) \times \mathbb{R}^n \\ u|_{t=0} &= u_0 & \text{ in } \mathbb{R}^n \,. \end{cases}$$

- $x \mapsto (x, u(t, x))$ is the parameterization of a hypersurface in \mathbb{R}^{n+1} .
- models the evolution of soap films.
- is a non-linear parabolic PDE.

How can we show the *local* existence and uniqueness of the (strong) solution of the problem?

Problem (MCF-equation)

$$\begin{cases} \partial_t u - \Delta u &= -\sum_{i,j=1}^n \frac{\partial_i u \partial_j u}{1 + |\nabla u|^2} \partial_i \partial_j u \eqqcolon G(u) & \text{ in } (0, T) \times \mathbb{R}^n \\ u|_{t=0} &= u_0 & \text{ in } \mathbb{R}^n \,. \end{cases}$$

We define the solution operator $\mathbb{E} \ni u \mapsto Lu = \begin{pmatrix} \partial_t u - \Delta u \\ u(0) \end{pmatrix} \in \mathbb{F}$. Then u solves (MCF) iff

$$Lu = \begin{pmatrix} G(u) \\ u_0 \end{pmatrix} \Leftrightarrow u = L^{-1} \begin{pmatrix} G(u) \\ u_0 \end{pmatrix}.$$

So: IF L is invertible and $G : \mathbb{E} \to \operatorname{pr}_1 \mathbb{F}$ the equation is reduced to a fixed point problem!

We want to apply the Banach fixed point theorem to $u = L^{-1} \begin{pmatrix} G(u) \\ u_0 \end{pmatrix}$. We need:

•
$$\mathbb{E} \ni u \mapsto Lu = \begin{pmatrix} \partial_t u - \Delta u \\ u(0) \end{pmatrix} \in \mathbb{F}$$
 invertible, that is for all
 $(f, u_0)^T \in \mathbb{F}$ there is a unique $u \in \mathbb{E}$ with $Lu = (f, u_0)^T$. We now use
 $\mathbb{E} := W^{1,p}(0, T; L^p(\mathbb{R}^n)) \cap L^p(0, T; W^{2,p}(\mathbb{R}^n))$
 $\mathbb{F} := L^p(0, T; L^p(\mathbb{R}^n)) \times \{u(0) : u \in \mathbb{E}\}.$

We want to apply the Banach fixed point theorem to $u = L^{-1} \begin{pmatrix} G(u) \\ u_0 \end{pmatrix}$. We need:

•
$$\mathbb{E} \ni u \mapsto Lu = \begin{pmatrix} \partial_t u - \Delta u \\ u(0) \end{pmatrix} \in \mathbb{F}$$
 invertible, that is for all
 $(f, u_0)^T \in \mathbb{F}$ there is a unique $u \in \mathbb{E}$ with $Lu = (f, u_0)^T$. We now use
 $\mathbb{E} := W^{1,p}(0, T; L^p(\mathbb{R}^n)) \cap L^p(0, T; W^{2,p}(\mathbb{R}^n))$
 $\mathbb{F} := L^p(0, T; L^p(\mathbb{R}^n)) \times \{u(0) : u \in \mathbb{E}\}.$

G maps E into pr₁ F: an important technicality: Sobolev embeddings show: true for p > n + 2.

Both points yield: $L^{-1}G$ is a self-mapping, i.e. $L^{-1}\begin{pmatrix}G(u)\\u_0\end{pmatrix}:\mathbb{E}\to\mathbb{E}$

We want to apply the Banach fixed point theorem to $u = L^{-1} \begin{pmatrix} G(u) \\ u_0 \end{pmatrix}$. We need:

•
$$\mathbb{E} \ni u \mapsto Lu = \begin{pmatrix} \partial_t u - \Delta u \\ u(0) \end{pmatrix} \in \mathbb{F}$$
 invertible, that is for all
 $(f, u_0)^T \in \mathbb{F}$ there is a unique $u \in \mathbb{E}$ with $Lu = (f, u_0)^T$. We now use
 $\mathbb{E} := W^{1,p}(0, T; L^p(\mathbb{R}^n)) \cap L^p(0, T; W^{2,p}(\mathbb{R}^n))$
 $\mathbb{F} := L^p(0, T; L^p(\mathbb{R}^n)) \times \{u(0) : u \in \mathbb{E}\}.$

G maps E into pr₁ F: an important technicality: Sobolev embeddings show: true for p > n + 2.

Both points yield: $L^{-1}G$ is a self-mapping, i.e. $L^{-1}\begin{pmatrix}G(u)\\u_0\end{pmatrix}:\mathbb{E}\to\mathbb{E}$

• Strict contraction follows from some basic calculations using DG(0) = 0 and the smoothness of G.

The invertibility of
$$\mathbb{E} \ni u \mapsto Lu = \begin{pmatrix} \partial_t u - \Delta u \\ u(0) \end{pmatrix} \in \mathbb{F}$$
 is the fundamental concept in our approach.

Definition (Maximal regularity)

X Banach space, $A: D(A) \subset X \to X$ closed operator has maximal L^p -regularity if for all $f \in L^p(0, T; X)$ there exists a unique solution

$$u \in \mathbb{E} := W^{1,p}(0,T;X) \cap L^p(0,T;D(A))$$

of the Cauchy problem

$$\begin{cases} \partial_t u(t) + Au(t) &= f(t) \\ u(0) = 0. \end{cases}$$

A closed: $\{(x, Ax) : x \in D(A)\} \subset X \times X$ is closed subspace.

Definition (Maximal regularity)

There exists a unique solution $u \in \mathbb{E} := W^{1,p}(0,T;X) \cap L^p(0,T;D(A))$ of

$$\begin{cases} \partial_t u(t) + Au(t) &= f(t) \\ u(0) = 0. \end{cases}$$

- Our example (MCF): $X = L^{p}(\mathbb{R}^{n})$
- Defining property holds

for
$$u(0) = 0$$
 \Rightarrow for $u(0) = u_0 \in \{w(0) : w \in \mathbb{E}\}.$

Fourier multiplier theorems: $A = -\Delta$ has maximal L^{p} -regularity.

Theorem (MCF-equation)

Let T > 0, $p \in (n + 2, \infty)$. Then there exists $\kappa(T) > 0$ such that

(MCF)
$$\begin{cases} \partial_t u - \Delta u &= -\sum_{i,j=1}^n \frac{\partial_i u \partial_j u}{1 + |\nabla u|^2} \partial_i \partial_j u & \text{ in } (0,T) \times \mathbb{R}^n \\ u|_{t=0} &= u_0 & \text{ in } \mathbb{R}^n . \end{cases}$$

has a unique solution $u \in \mathbb{E}$ for $||u_0||_{W^{2-\frac{2}{p},p}(\mathbb{R}^n)} \leq \kappa$.

How can maximal regularity be characterized?

Theorem (Hilbert space characterization of maximal regularity)

H Hilbert space, A closed operator on H has maximal regularity iff

● For every x ∈ H there exists a unique solution u_x ∈ C([0,∞); H) to the integrated problem

$$u_x(t)=u_0-\int_0^tAu_x(s)\,ds.$$

② The mapping $t\mapsto u_x(t)$ extends to a holomorphic mapping

$$z\mapsto w_x(z)$$

for all $x \in H$ and z in a sector $\Sigma_{\varphi} \coloneqq \{z \in \mathbb{C} \setminus \{0\} : |\arg z| < \varphi\}.$

- The criteria are easy to check in practice.
- Maximal regularity on Hilbert spaces is too weak for the study of non-linear PDE.

Example

(MCF) needs maximal regularity on $L^{p}(\mathbb{R}^{n})$ for p > n + 2 > 2.

Reminder:

Generation of the exists a unique solution u_x ∈ C([0,∞); X) to the integrated problem

$$u_x(t)=u_0-\int_0^tAu_x(s)\,ds.$$

2 The mapping $t \mapsto u_x(t)$ extends to a holomorphic mapping

 $z\mapsto w_x(z)$

 $\text{for all } x \in X \text{ and } z \text{ in a sector } \Sigma_{\varphi} \coloneqq \{z \in \mathbb{C} \setminus \{0\} : |\text{arg } z| < \varphi\}.$

Theorem

X Banach space: A has maximal regularity \Rightarrow 1) & 2.

Reminder:

Generation of the exists a unique solution u_x ∈ C([0,∞); X) to the integrated problem

$$u_x(t)=u_0-\int_0^tAu_x(s)\,ds.$$

2 The mapping $t \mapsto u_x(t)$ extends to a holomorphic mapping

 $z\mapsto w_x(z)$

 $\text{for all } x \in X \text{ and } z \text{ in a sector } \Sigma_{\varphi} \coloneqq \{z \in \mathbb{C} \setminus \{0\} : |\text{arg } z| < \varphi\}.$

Theorem

X Banach space: A has maximal regularity \Rightarrow 1) & 2.

Problem (Maximal regularity problem)

If $X = L^p(\Omega)$ for $p \in (1, \infty)$, do 1) & 2) imply maximal regularity?

Problem (Maximal regularity problem)

If $X = L^p(\Omega)$ for $p \in (1, \infty)$, do 1) & 2) imply maximal regularity?

- H. Brézis: formulation of the problem at the beginning of the 80s.
- N. Kalton & G. Lancien: negative answer (2000). They merely showed the existence of a counterexample.
- S.F.: First explicit counterexample (2013).

Where's stochastics? Characterization on $X = L^{p}(\Omega)$ by L. Weis (2001).

Theorem (Banach space characterization of maximal regularity)

● For every x ∈ H there exists a unique solution u_x ∈ C([0,∞); X) to the integrated problem

$$u_x(t)=u_0-\int_0^tAu_x(s)\,ds.$$

2 The mapping $t \mapsto u_x(t)$ extends to a holomorphic mapping

$$z\mapsto w_x(z)\qquad (x\in X,z\in \Sigma_{\varphi}).$$

Where's stochastics? Characterization on $X = L^{p}(\Omega)$ by L. Weis (2001).

Theorem (Banach space characterization of maximal regularity)

For every x ∈ H there exists a unique solution u_x ∈ C([0,∞); X) to the integrated problem

$$u_x(t)=u_0-\int_0^tAu_x(s)\,ds.$$

2 The mapping $t \mapsto u_x(t)$ extends to a holomorphic mapping

$$z\mapsto w_x(z)\qquad (x\in X,z\in \Sigma_{\varphi}).$$

3 For i.i.d. Rademacher variables r_1, r_2, r_3, \dots ($\mathbb{P}(r_i = \pm 1) = \frac{1}{2}$) one has

$$\mathbb{E}\left\|\sum_{k=1}^n r_k w_{x_k}(z_k)\right\| \leq C \cdot \mathbb{E}\left\|\sum_{k=1}^n r_k x_k\right\|$$

for some C > 0 and all $x_1, \ldots x_n \in X$, $z_1, \ldots, z_n \in \Sigma_{\varphi}$.

Stephan Fackler (University of Ulm)

Thank you for your attention!