

Universität Ulm

Abgabe:

29.04.10, vor der Übung

Prof. W. Arendt M. Gerlach Sommersemester 10

12 Punkte

Übungen zur Funktionalanalysis

Blatt 1

1. Es sei X ein Vektorraum und sowohl $\|\cdot\|$ als auch $\|\cdot\|'$ eine Norm auf X. Wir sagen, dass die Normen $\|\cdot\|$ und $\|\cdot\|'$ äquivalent sind (Schreibweise $\|\cdot\| \sim \|\cdot\|'$), falls es Konstanten $\alpha, \beta > 0$ gibt, sodass

$$\alpha \|x\| \le \|x\|' \le \beta \|x\| \quad (x \in X).$$

Zeige, dass folgende Aussagen äquivalent sind.

- (i) Die Normen $\|\cdot\|$ und $\|\cdot\|'$ sind äquivalent.
- (ii) Eine Folge in X ist genau dann eine Cauchyfolge bzgl. $\|\cdot\|$, wenn sie es bzgl. $\|\cdot\|'$ ist.
- (iii) Eine Folge in X ist genau dann konvergent bzgl. $\|\cdot\|$, wenn sie es bzgl. $\|\cdot\|'$ ist.

Zeige weiter, dass $(X, \|\cdot\|)$ genau dann dann vollständig ist, wenn $(X, \|\cdot\|')$ vollständig ist, unter der Voraussetzung, dass die beiden Normen äquivalent sind.

2. Es sei a < b und C([a, b]) die Menge aller stetigen Funktionen von [a, b] nach \mathbb{R} .

(a) Zeige, dass
$$||f||_{\infty} := \sup\{|f(x)| : x \in [a, b]\} \quad (f \in C([a, b]))$$

eine Norm auf C([a,b]) definiert.

(b) Zeige, dass (1)

$$||f||_1 := \int_a^b |f(x)| \, dx \quad (f \in C([a, b]))$$

eine Norm auf C([a,b]) definiert.

- (c) Es sei $x \in [a, b]$ und $\delta_x f := f(x)$. Zeige, dass $\delta_x : (C([a, b]), \|\cdot\|_{\infty}) \to \mathbb{R}$ eine stetige (2) lineare Abbildung ist und bestimme $\|\delta_x\|$.
- (d) Zeige, dass $\delta_a: (C([a,b], \|\cdot\|_1) \to \mathbb{R} \text{ nicht stetig ist.}$ (2)
- (e) Entscheide, ob die Normen $\|\cdot\|_{\infty}$ und $\|\cdot\|_{1}$ äquivalent sind. (1)