

Universität Ulm

Abgabe:

22.07.10, vor der Übung

Prof. W. Arendt M. Gerlach Sommersemester 10

12 Punkte

Lösungen zur Funktionalanalysis

Blatt 13

Alle Punkte dieses Blattes sind Zusatzpunkte!

30. In dieser Aufgabe lösen wir die Wärmeleitungsgleichung auf \mathbb{R} . Dazu betrachten wir den (9) Funktionenraum W aller Funktionen $f:[0,\infty)\times\mathbb{R}\to\mathbb{R}$ mit $u(\cdot,x)\in C^1[0,\infty)$ für alle $x\in\mathbb{R}$ und $u(t,\cdot)\in\mathcal{S}$ für alle $t\geq 0$, wobei \mathcal{S} den Schwartz-Raum bezeichne.

Es sei eine Funktion $u_0 \in \mathcal{S}$ vorgegeben. Wir betrachten das Problem

(WLG)
$$\begin{cases} u_t = u_{xx} \\ u(0,\cdot) = u_0 \end{cases}$$

(a) Zeige, dass jede Funktion $u \in W$, die das Problem (WLG) löst, der Bedingung

$$(\mathcal{F}u(t,\cdot))(x) = \exp(-x^2t)(\mathcal{F}u_0)(x) \quad (t \in [0,\infty), \ x \in \mathbb{R})$$

genügt.

Hinweis: Betrachte die Funktion $v(t,x) := (\mathcal{F}u(t,\cdot))(x)$ und bestimme ihre Ableitung nach t.

(b) Finde eine Funktion $k \in W$ mit $(\mathcal{F}k(t,\cdot))(x) = \exp(-tx^2)$ für alle $t \in [0,\infty)$ und $x \in \mathbb{R}$.

Hinweis: Benutze die inverse Fouriertransformation und ihren Fixpunkt $h(x) = \exp(-x^2/2)$.

(c) Finde eine Funktion $u:[0,\infty)\times\mathbb{R}\to\mathbb{R}$ mit $u(\cdot,x)\in C^1[0,\infty)$ für alle $x\in\mathbb{R}$ und $u(t,\cdot)\in C^2(\mathbb{R})$ für alle $t\geq 0$, die das Problem W löst.

Lösung:

(a) Es sei $u \in W$ eine Lösung von (WLG). Setze $v(t,x) := (\mathcal{F}u(t,\cdot))(x)$ für $t \geq 0$ und $x \in \mathbb{R}$. Dann ist

$$v_t(t,x) = (\mathcal{F}u_t(t,\cdot))(x) = -x^2(\mathcal{F}u(t,\cdot)) = -x^2v(t,x) \quad (t \ge 0, \ x \in \mathbb{R}).$$

Wegen

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(v(t,x)\exp(x^2t)\right) = v_t(t,x)\exp(x^2t) + v(t,x)x^2\exp(x^2t) = 0 \quad (t \ge 0, \ x \in \mathbb{R})$$

ist $v(t,x) = c(x) \exp(-x^2 t)$ für alle $t \ge 0$ und $x \in \mathbb{R}$ mit einer von x abhängingen Konstanten c(x). Mit t = 0 sehen wir, dass $c(x) = v(0,x) = (\mathcal{F}(u(0,\cdot))(x))$ und die Behauptung ist bewiesen.

(b) Es sei $g(t,x) := \exp(-x^2t)$. Dann ist

$$k(t,x) := (\mathcal{F}^{-1}g(t,\cdot))(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp(ixy) \exp(-y^2 t) \, \mathrm{d}y$$
$$= \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} \exp(ixz/\sqrt{2t}) \exp(-z^2/2) \, \mathrm{d}z$$
$$= \frac{1}{\sqrt{2t}} (\mathcal{F}^{-1}h)(x/\sqrt{2t}) = \frac{1}{\sqrt{2t}} \exp(-x^2/4t)$$

die gesucht Funktion, wobei $h(x) = \exp(-x^2/2)$ ein Fixpunkt der Fouriertransformation ist.

(c) Nach den bisherigen Aufgabenteilen muss für jede Lösung $u \in W$ von (WLG) gelten, dass

$$\mathcal{F}u(t,\cdot) = \mathcal{F}k(t,\cdot)\mathcal{F}u_0.$$

Also ist $\sqrt{2\pi}u(t,x) := (k(t,\cdot) \star u_0)(x)$ ein vielversprechender Kandidat. Dies liefert

$$u(t,x) = \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} \exp\left(-\frac{(x-y)^2}{4t}\right) u_0(y) \, \mathrm{d}y.$$

Wegen

$$u_x(t,x) = \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} \exp\left(\frac{-(x-y)^2}{4t}\right) \frac{-2(x-y)}{4t} u_0(y) \, dy$$

ist

$$u_{xx}(t,x) = \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} \exp\left(\frac{-(x-y)^2}{4t}\right) \left(\frac{(x-y)^2}{4t^2} - \frac{1}{2t}\right) u_0(y) \, dy = u_t(t,x)$$

für alle t > 0 und $x \in \mathbb{R}$. Darüber hinaus kann man zeigen, dass $\lim_{t\downarrow 0} u(t,x) = u_0(x)$ gleichmäßig auf kompakten Teilmengen von \mathbb{R} .

- **31.** Für $t \in \mathbb{R}$ betrachten wir den Linksshift $L_t : C(\mathbb{R}) \to C(\mathbb{R})$, gegeben durch $(L_t f)(x) := (3)$ f(x+t), auf dem Banachraum der stetigen Funktionen.
 - (a) Zeige, dass $L_t \in \mathcal{L}(C(\mathbb{R}))$ für alle $t \in \mathbb{R}$ und bestimme $||L_t||$.
 - (b) Bestimme alle $f \in C(\mathbb{R})$, für die die Abbildung $T_f : \mathbb{R} \to C(\mathbb{R})$, gegeben durch $T_f(t) := L_t f$, stetig ist.

Lösung:

(a) Für alle $t \in \mathbb{R}$ ist

$$||L_t f|| = \sup_{x \in \mathbb{R}} |f(x+t)| = \sup_{x \in \mathbb{R}} |f(x)| = ||f|| \quad (f \in C(\mathbb{R})).$$

Somit ist $L_t: C(\mathbb{R}) \to C(\mathbb{R})$ isometrisch, insbesondere also stetig mit $||L_t|| = 1$ für alle $t \in \mathbb{R}$.

(b) Zunächst sei $f \in C(\mathbb{R})$ derart, dass die Abbildung T_f stetig ist. Die Stetigkeit in 0 besagt gerade, dass es für alle $\varepsilon > 0$ ein $\delta > 0$ gibt, sodass $|t| < \delta$ impliziert dass

$$||f(x) - f(x+t)|| < \varepsilon \quad \Leftrightarrow \quad |f(x) - f(x+t)| < \varepsilon \, \forall x \in \mathbb{R}.$$

Dies bedeutet, dass die Funktion f gleichmäßig stetig ist.

Sei nun $f \in C(\mathbb{R})$ gleichmäßig stetig, $t_0 \in \mathbb{R}$ und $\varepsilon > 0$. Dann gibt es ein $\delta > 0$ mit

$$|x - y| < \delta \quad \Rightarrow \quad |f(x) - f(y)| < \varepsilon.$$

Für alle $t \in \mathbb{R}$ mit $|t - t_0| < \delta$ ist also

$$||L_{t_0}f - L_tf|| = \sup_{x \in \mathbb{R}} |f(x + t_0) - f(x + t)| < \varepsilon,$$

d.h. T_f ist stetig in t_0 .