

Universität Ulm

Abgabe: Di, 24.06.14 in der Vorlesung Prof. Dr. W. Arendt Dr. M. Gerlach Sommersemester 14

24 Punkte

Übungen zu den Elementen der Funktionentheorie Blatt 1

1. Berechne jeweils Real- und Imaginärteil, den Betrag und den Hauptwert des Arguments (8) folgender komplexer Zahlen z.

(a)
$$z := \frac{1-3i}{i-1} + \frac{3}{i+1}$$

(b)
$$z := 2 \exp\left(\frac{i\pi}{2}\right) - i - 1$$

(c)
$$z := \left(\frac{1 + i\sqrt{3}}{2}\right)^n$$
, $n \in \mathbb{Z}$.

(d)
$$z := \sum_{k=0}^{\infty} \left(\frac{-1}{i+1}\right)^k$$

2. Entscheide in welchen Punkten folgende Funktionen $f \colon D \to \mathbb{C}$ die Cauchy-Riemannschen (8) Differenzialgleichungen erfüllen und welche der Funktionen holomorph sind.

(a)
$$D = \mathbb{C}, f(x+iy) := x^3y^2 + ix^2y^3$$

(b)
$$D = \mathbb{C}, f(z) := z \operatorname{Re} z$$

(c)
$$D = \mathbb{C} \setminus \{0\}, f(z) := \frac{z}{z}$$

(d)
$$D = \mathbb{C} \setminus \{0\}, f(x+iy) := \frac{x-iy}{x^2+y^2}.$$

- **3.** Es sei $D \subset \mathbb{C}$ eine offene Menge, $f \colon D \to \mathbb{C}$ holomorph und $\widetilde{D} := \{\overline{a} : a \in D\}$. Zeige, dass die durch $g(z) := \overline{f(\overline{z})}$ gegebene Funktion $g \colon \widetilde{D} \to \mathbb{C}$ holomorph ist und bestimme ihre Ableitung.
- **4.** Es sei $D \subset \mathbb{C}$ offen und zusammenhängend und $f: D \to \mathbb{C}$ holomorph. Zeige, dass jede der folgenden Bedingungen impliziert, dass f konstant ist.

(a) Re
$$f$$
 ist konstant. (1)

(b) Im
$$f$$
 ist konstant. (1)

(c)
$$|f|$$
 ist konstant. (2)

Hinweis: Aus Analysis 2 ist bekannt, dass eine stetig differenzierbare Funktion $f: D \to \mathbb{R}$ auf einer offenen und zusammenhängenden Menge $D \subset \mathbb{R}^2$ konstant ist, falls $\nabla f = 0$.