

Exercises for Applied Analysis

Sheet 11

- **47.** Let $(\Omega, \Sigma, \mathbb{P})$ be a probability space and $X, Y \in L^2(\Omega, \Sigma, \mathbb{P})$.
 - (a) Prove that if X and Y are independent, then Cov(X, Y) = 0.
 - (b) Let (X, Y) be equidistributed on the unit disc

$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$$

Show that Cov(X, Y) = 0 but X and Y are not independent.

- **48.** Let $(\Omega, \Sigma, \mathbb{P})$ be a probability space, X and Y be independent random variables such that X has continuous distribution, i.e. $\mu_X(\{a\}) = 0$ for all $a \in \mathbb{K}$. Prove that $\mathbb{P}(X = Y) = 0$.
- **49.** Let $(\Omega, \Sigma, \mathbb{P})$ be a probability space and $(X_n)_{n \in \mathbb{N}}$ be a sequence of independent random variables on Ω .
 - (a) Prove that the sequence X_n either converges almost surely or diverges almost surely. Hint: Convince yourself that

$$\left\{\omega \in \Omega: X_n(\omega) \text{ converges}\right\} = \bigcap_{k \in \mathbb{N}} \bigcup_{n_0 \ge k} \bigcap_{n,m \ge n_0} \left\{ |X_n - X_m| \le \frac{1}{k} \right\}$$

and check that it belongs to the tail- $\sigma\text{-algebra}.$

- (b) Assume that $X_n \to X$ a.s. Prove that X is a.s. constant. Hint: Show that X is measurable w.r.t. the tail- σ -algebra.
- **50.** Decide for the following normed spaces $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ and the linear maps $T: E \to F$ whether $T \in \mathscr{L}(E, F)$. If so, determine $\|T\|_{\mathscr{L}(E,F)}$.
 - (a) $E = F = C([0,1]), ||f||_E = ||f||_F = ||f||_{\infty},$

$$(Tf)(t) := \int_0^t f(s) \, \mathrm{d}s$$

- (b) $E = C^1([0,1])$, the space of continuously differentiable functions $f : [0,1] \to \mathbb{R}$, $F = C([0,1]), \|f\|_E = \|f\|_F = \|f\|_{\infty}$ and Tf = f'.
- (c) $E = (L^p(\Omega, \Sigma, \mu), \|\cdot\|_p)$ for some measure space $(\Omega, \Sigma, \mu), (F, \|\cdot\|_F) = (\mathbb{K}, |\cdot|)$ and

$$Tf = \int_{\Omega} fg \, \mathrm{d}\mu$$

where $g \in L^q(\Omega, \Sigma, \mu)$ and $\frac{1}{p} + \frac{1}{q} = 1$. **Hint:** The function $f := \operatorname{sign} g \cdot |g|^{q-1}$ belongs to L^p .