

Exercises for Applied Analysis

Sheet 4

- 18. Let (M, d) be a metric space. Prove that the following assertions are equivalent.
 - (i) (M, d) is compact.
 - (ii) For every family $(A_j)_{j \in J}$ of closed subsets of M (for some index set J) satisfying $\bigcap_{j \in J} A_j = \emptyset$ it follows that $\bigcap_{j \in F} A_j = \emptyset$ for some finite set $F \subset J$.
- **19.** Let (M_1, d_1) and (M_2, d_2) be metric spaces and $f : M_1 \to M_2$ a continuous function. Prove that f(K) is compact for all compact sets $K \subset M_1$.

Conversely, let $g: M_1 \to M_2$ be a function such that g(K) is compact for all compact sets $K \subset M_1$. Does this imply that g is continuous?

20. Let $1 \le p < \infty$ and $\mathbf{x} = (x_n) \in \ell^p$ such that $x_n \ge 0$ for all $n \in \mathbb{N}$. We denote by

$$[0, \mathbf{x}] := \{ \mathbf{y} = (y_n) \in \ell^p : 0 \le y_n \le x_n \ \forall n \in \mathbb{N} \},\$$

a so-called *order intervall*. Prove that $[0, \mathbf{x}]$ is compact in ℓ^p .

- **21.** Give one example each for the following situations.
 - (a) An unbounded and continuous function $f: U \to \mathbb{R}$ on a bounded interval $U \subset \mathbb{R}$.
 - (b) A bounded function $f: M \to \mathbb{R}$ on a compact metric space (M, d) which does not have a maximum.
 - (c) A bounded but not totally bounded subset of a normed space.
 - (d) An open cover of $\{\frac{1}{n} : n \in \mathbb{N}\} \subset \mathbb{R}$, endowed with the euclidean metric, which does not have a finite subcover.
- **22.** Decide which of the following sets $\mathcal{A} \subset C(M)$ are unital algebras, which separate the points in M and which are closed under conjugation.
 - (a) We endow $M := \{z \in \mathbb{C} : |z| = 1\}$ with the euclidean metric d. Let \mathcal{A} be the set of all complex polynomials on M, i.e., $\mathcal{A} := \{z \mapsto \sum_{k=0}^{n} a_k z^k : n \in \mathbb{N}, a_k \in \mathbb{C}\}.$
 - (b) We endow $M := \{z \in \mathbb{C} : |z| = 1\}$ with the euclidean metric d. Let \mathcal{A} be the set of all complex polynomials on M in the variables z and $\frac{1}{z}$, i.e., $\mathcal{A} := \{z \mapsto \sum_{k=-n}^{n} a_k z^k : n \in \mathbb{N}, a_k \in \mathbb{C}\}.$
 - (c) Consider $M := [0,1] \times [0,1]$ with the euclidean metric d. Let \mathcal{A} be the set of all polynomials on M, i.e., $\mathcal{A} := \{(x,y) \mapsto \sum_{k,l=0}^{n} a_{k,l} x^k y^l : n \in \mathbb{N}, a_{k,l} \in \mathbb{R}\}.$
 - (d) Consider M := [0, 1] with the euclidean metric d. Let \mathcal{A} be the set of all polynomials on M with even exponents only, i.e., $\mathcal{A} := \{x \mapsto \sum_{k=0}^{n} a_k x^{2k} : n \in \mathbb{N}, a_k \in \mathbb{R}\}.$
 - (e) Consider M := [0, 1] with the euclidean metric d. Let \mathcal{A} be the set of all polynomials on M with odd exponents only, i.e., $\mathcal{A} := \{x \mapsto \sum_{k=0}^{n} a_k x^{2k+1} : n \in \mathbb{N}, a_k \in \mathbb{R}\}.$