

Exercises for Applied Analysis

Sheet 5

23. Endow $M := [1, \infty)$ with the euclidean metric and consider the mapping $\varphi : M \to M$ given by $\varphi(x) := x + \frac{1}{x}$. Show that

$$|\varphi(x) - \varphi(y)| < |x - y|$$

for all $x, y \in M$ and that φ does not have a fixed point. Why does this not conflict with Banach's fixed point theorem?

24. Let T > 0 and consider the ordinary differential equation

(P)
$$\begin{cases} u'(t) = 2tu(t) & t \in [0, T] \\ u(0) = 1 \end{cases}$$

(see Definition 1.8.7).

- (a) Prove that there exists a unique solution $u^* : [0, T] \to \mathbb{R}$ of (P).
- (b) Let $\varphi : C([0,T]) \to C([0,T])$ be corresponding to (P) as in Lemma 1.8.8. and let $v : C([0,T]) \to C([0,T])$ be given by v(t) := 1 for all $t \in [0,T]$. Compute $\varphi(v), \varphi^2(v)$ and $\varphi^3(v)$.
- (c) Guess the solution of (P).
- **25.** Let $\Omega = \{1, 2, 3, 4\}$ and $\mathcal{A} = \{\{1, 2\}, \{2, 3, 4\}\}$. Determine $\sigma(\mathcal{A})$.
- **26.** Let $\Omega = \mathbb{N}$ and denote by $2\mathbb{N} = \{2k : k \in \mathbb{N}\}$ the set of all even numbers. Determine $\sigma(\mathcal{P}(2\mathbb{N}))$.
- 27. Consider the metric space $M = \mathbb{R}$ endowed with the euclidean metric d. Prove that $\mathscr{B}(M,d) = \sigma(\mathcal{A})$ where
 - (a) $\mathcal{A} = \{(a, b) : a, b \in \mathbb{R}, a < b\}.$
 - (b) $\mathcal{A} = \{ [a, b) : a, b \in \mathbb{R}, a < b \}.$
 - (c) $\mathcal{A} = \{(a, \infty) : a \in \mathbb{R}\}.$

28. Let (M, d) be a separable metric space. Prove that $\mathscr{B}(M, d) = \sigma(\mathcal{A})$ where

$$\mathcal{A} = \{ B(x,r) : x \in M, r > 0 \}.$$