

Exercises for Applied Analysis

Sheet 7

33. Let μ be a probability measure on $\mathscr{B}(\mathbb{R})$. The cumulative distribution function $F_{\mu} : \mathbb{R} \to \mathbb{R}$ is defined by

$$F_{\mu}(t) := \mu((-\infty, t]) \quad (t \in \mathbb{R}).$$

- (a) Show that F_{μ} has the following properties.
 - (i) F_{μ} is monotonically increasing.
 - (ii) F_{μ} is right continuous, i.e. $\lim_{n\to\infty} F_{\mu}(t_n) = F_{\mu}(t)$ whenever $\lim_{n\to\infty} t_n = t$ and $t_n \ge t$ for all $n \in \mathbb{N}$.
 - (iii) $\lim_{t \to -\infty} F_{\mu}(t) = 0.$
 - (iv) $\lim_{t\to\infty} F_{\mu}(t) = 1.$
 - (v) F_{μ} is continuous if and only if $\mu(\{x\}) = 0$ for all $x \in \mathbb{R}$.
- (b) Let ν be another probability measure on $\mathcal{B}(\mathbb{R})$. Prove that $\mu = \nu$ if and only if $F_{\mu} = F_{\nu}$.
- (c) Determine the measure μ if the cumulative distribution function is given as

(i)
$$F_{\mu}(t) = \mathbb{1}_{[x_0,\infty)}(t).$$

(ii)
$$F_{\mu}(t) = t \cdot \mathbb{1}_{[0,1]}(t) + \mathbb{1}_{(1,\infty)}(t).$$

- **34.** Let λ be the Lebesgue measure on $\mathscr{B}(\mathbb{R})$. Prove that $\lambda(A) = \lambda(-A)$ for all $A \in \mathscr{B}(\mathbb{R})$ where $-A := \{-x : x \in A\}$.
- **35.** Let Ω be a set. For a sequence $(A_n) \subset \mathscr{P}(\Omega)$ of subsets of Ω we define

$$\limsup(A_n) := \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_k$$

and

$$\liminf(A_n) := \bigcup_{n \in \mathbb{N}} \bigcap_{k \ge n} A_k.$$

A sequence $(A_n) \subset \mathscr{P}(\Omega)$ is said to be *convergent to some* $A \subset \Omega$ if

$$A = \liminf(A_n) = \limsup(A_n)$$

- (a) Let (Ω, Σ, μ) be a finite measure space. Show that $\lim_{n\to\infty} \mu(A_n) = \mu(A)$ for every sequence $(A_n) \subset \Sigma$ that converges to $A \in \Sigma$.
- (b) For $n \in \mathbb{N}$ let $A_n := [-1/n, 1/n] \times [-n, n] \in \mathscr{B}(\mathbb{R}^2)$. Prove that (A_n) converges to $\{0\} \times \mathbb{R}$, compute $\lambda_2(\{0\} \times \mathbb{R})$ and conclude that (a) does not hold in infinite measure spaces.
- (c) Let (Ω, Σ, μ) be a measure space and $(A_n) \subset \Sigma$ such that $\sum_{n=1}^{\infty} \mu(A_n) < \infty$. Show that

 $\mu(\{x \in \Omega : x \in A_n \text{ for intinitely many } n \in \mathbb{N}\}) = 0.$