

Universität Ulm

Abgabe:

31.10.11, vor der Übung

Prof. W. Arendt M. Gerlach Wintersemester 11/12

16 Punkte

Übungen zu Maßtheorie

Blatt 1

- 1. Bestimme alle σ -Algebren auf der Grundmenge $\Omega = \{ \clubsuit, \spadesuit, \spadesuit \}$. (2)
- 2. Es seien Σ und Σ' σ -Algebren auf einer Grundmenge Ω sowie $\mathcal{S}, \mathcal{S}' \subset \mathcal{P}(\Omega)$. Zeige oder (4) widerlege:
 - (a) $\Sigma \cup \Sigma'$ ist eine σ -Algebra auf Ω .
 - (b) $\Sigma \cap \Sigma'$ ist eine σ -Algebra auf Ω .
 - (c) Es sei $\sigma(S) = \Sigma$ und $S \subset \Sigma'$. Dann ist $\Sigma \subset \Sigma'$.
 - (d) Es sei $\sigma(S) = \Sigma$ und $\sigma(S') = \Sigma'$. Dann ist $\sigma(S \cap S') = \Sigma \cap \Sigma'$
- 3. Zeige, dass $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{S})$ für die folgende Teilmengensysteme $\mathcal{S} \subset \mathcal{P}(\mathbb{R})$. (2)
 - (a) $S = \{(a, b) : -\infty \le a < b \le \infty\}$
 - **Hinweis:** Schreibe jede offene Menge als Vereinigung von (a, b) mit $a, b \in \mathbb{Q}$. (2)
 - (b) $S = \{[a, b) : -\infty < a < b \le \infty\}$
 - Hinweis: Benutze Aufgabenteil (a). (2)
 - (c) $S = \{K \subset \mathbb{R} : K \text{ kompakt } \}$
- **4.** Für eine Mengenfolge $(A_n)_{n\in\mathbb{N}}\subset\mathcal{P}(\Omega)$ auf einer Grundmenge Ω definieren wir

$$\lim\sup(A_n):=\bigcap_{n\in\mathbb{N}}\bigcup_{k\geq n}A_k$$

sowie

$$\lim\inf(A_n) := \bigcup_{n\in\mathbb{N}} \bigcap_{k\geq n} A_k.$$

Wir sagen, dass eine Mengenfolge $(A_n) \subset \mathcal{P}(\Omega)$ gegen eine Grenzmenge $A \subset \Omega$ konvergiert, falls

$$A = \lim \inf(A_n) = \lim \sup(A_n).$$

- (a) Zeige, dass für jede Folge $(A_n) \subset \mathcal{P}(\Omega)$ stets $\liminf(A_n) \subset \limsup(A_n)$. (1)
- (b) Es sei $(A_n) \subset \mathcal{P}(\Omega)$ sodass entweder $A_n \subset A_{n+1}$ für alle $n \in \mathbb{N}$ (man sagt, die Folge (A_n) ist monoton wachsend) oder $A_n \supset A_{n+1}$ $((A_n)$ ist monoton fallend). Zeige, dass (A_n) konvergiert und bestimme ihre Grenzmenge.
- (c) Es sei $\Omega = \mathbb{N}$. Entscheide, ob nachstehende Mengenfolgen konvergieren und bestimme ihre Grenzmenge.
 - $A_n := \{k \in \mathbb{N} : n \text{ teilt } k\}.$
 - $A_n := \{k \in \mathbb{N} : k \text{ ist Primteiler von } n\}.$