

Universität Ulm

Abgabe:

12.12.2011, vor der Übung

Prof. W. Arendt M. Gerlach Wintersemester 11/12

16 Punkte

Übungen zu Maßtheorie

Blatt 7

- **23.** Sei $f:[1,\infty)\to [0,\infty)$ eine monoton fallende Funktion. Zeige, dass f genau dann bzgl. (4) des Lebesguemaßes λ auf $[1,\infty)$ integrierbar ist, wenn $\sum_{k=1}^{\infty} f(k) < \infty$.
- 24. Bestimme, falls existent, den Grenzwert

(12)

$$\lim_{n\to\infty} \int_{\Omega} f_n \, \mathrm{d}\mu$$

in den folgenden Fällen.

- (a) Es sei $\Omega := [0, 2\pi], \ \mu := \lambda \text{ und } f_n(x) := \sin(x)^n.$
- (b) Es sei $\Omega := [0, 2\pi], \ \mu := \delta_{3\pi/2} \ \text{und} \ f_n(x) := \sin(x)^n.$
- (c) Es sei $\Omega := \mathbb{R}$, $f_n(x) := \mathbb{1}_{[n,n+1]}(x)$ und $\mu := h \, d\lambda$ mit $h(x) := \frac{1}{x^2}$.
- (d) Es sei $\Omega := [0, 2], \, \mu := \lambda \text{ und } f_n(x) := x^n.$
- (e) Es sei $\Omega := (0, \infty), f_n(x) := (1 x^{-n}) \mathbb{1}_{[1,n]}(x)$ und μ bezeichne das Bildmaß von λ unter der Funktion $h: (0, \infty) \to (0, \infty)$, gegeben durch $h(x) := \frac{1}{x}$.
- (f) Es sei $\Omega := \mathbb{N}$, $f_n(k) := (\frac{k}{n} 2)^k \mathbb{1}_{\{1,\dots,n\}}(k)$ und $\mu := h \, \mathrm{d}\nu$, wobei die Funktion $h : \mathbb{N} \to \mathbb{R}$ gegeben ist durch $h(k) := \frac{1}{4^k}$ und ν das Zählmaß bezeichne.

In den Aufgabenteilen (a)-(e) sei Ω mit der Borel- σ -Algebra, in Teil (f) mit der Potenzmenge versehen.