Positive Semigroups and Perron Frobenius Theory

Jochen Glück

Ulm University

September 4, 2013

-

47 ▶

Let $T \in \mathbb{R}^{d \times d}$ be a matrix with spectrum $\sigma(T)$ and spectral radius $r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}.$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Let $T \in \mathbb{R}^{d \times d}$ be a matrix with spectrum $\sigma(T)$ and spectral radius $r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}$. If all entries $t_{kl} > 0$, then r(T) is a dominant eigenvalue of T, i.e. (i) $r(T) \in \sigma(T)$. (ii) $|\lambda| < r(T)$ for all other eigenvalues $\lambda \in \sigma(T)$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Let $T \in \mathbb{R}^{d \times d}$ be a matrix with spectrum $\sigma(T)$ and spectral radius $r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}$. If all entries $t_{kl} > 0$, then r(T) is a dominant eigenvalue of T, i.e. (i) $r(T) \in \sigma(T)$. (ii) $|\lambda| < r(T)$ for all other eigenvalues $\lambda \in \sigma(T)$.

Example

- Let *T* be the transition matrix of a Markov chain on a finite state space.
- If all transition probabilities $t_{kl} > 0$, then the Theorem can be applied to analyse the spectrum of T.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

If we only assume $t_{kl} \ge 0$, then the above Theorem may fail:

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

If we only assume $t_{kl} \ge 0$, then the above Theorem may fail:

Example

$$T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \text{i.e.} \quad T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_3 \\ x_1 \end{pmatrix}.$$

Then r(T) = 1, $\sigma(T) = \{1, e^{\frac{1}{3}2\pi i}, e^{\frac{2}{3}2\pi i}\}.$

イロト イポト イヨト イヨト

If we only assume $t_{kl} \ge 0$, then the above Theorem may fail:

Example

$$T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \text{i.e.} \quad T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_3 \\ x_1 \end{pmatrix}$$

Then
$$r(T) = 1$$
, $\sigma(T) = \{1, e^{\frac{1}{3}2\pi i}, e^{\frac{2}{3}2\pi i}\}$.

However:

Theorem

Let $T \in \mathbb{R}^{d \times d}$ with non-negative entries $t_{kl} \ge 0$. Then: (i) $r(T) \in \sigma(T)$. (ii) Whenever $r(T)e^{i\varphi} \in \sigma(T)$, then $r(T)e^{in\varphi} \in \sigma(T)$ for all $n \in \mathbb{Z}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Let \mathbb{X} be one of the Banach spaces $L^{p}(\Omega, \Sigma, \mu)$ or C(K) (or more generally an arbitrary Banach lattice).

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Let \mathbb{X} be one of the Banach spaces $L^{p}(\Omega, \Sigma, \mu)$ or C(K) (or more generally an arbitrary Banach lattice).

Definition

A (bounded) linear operator $T : \mathbb{X} \to \mathbb{X}$ is called **positive** if it maps positive elements to positive elements.

3

Let X be one of the Banach spaces $L^{p}(\Omega, \Sigma, \mu)$ or C(K) (or more generally an arbitrary Banach lattice).

Definition

A (bounded) linear operator $T : \mathbb{X} \to \mathbb{X}$ is called **positive** if it maps positive elements to positive elements.

Theorem

Let $T : \mathbb{X} \to \mathbb{X}$ be a positive linear operator. Then (i) $r(T) \in \sigma(T)$.

Let \mathbb{X} be one of the Banach spaces $L^{p}(\Omega, \Sigma, \mu)$ or C(K) (or more generally an arbitrary Banach lattice).

Definition

A (bounded) linear operator $T : \mathbb{X} \to \mathbb{X}$ is called **positive** if it maps positive elements to positive elements.

Theorem

Let
$$T : \mathbb{X} \to \mathbb{X}$$
 be a positive linear operator. Then

(i)
$$r(T) \in \sigma(T)$$
.

Furthermore, suppose that $||T^n|| \le M r(T)^n$ for an $M \ge 0$ and all $n \in \mathbb{N}_0$. Then we also have:

(ii) Whenever
$$r(T)e^{i\varphi} \in \sigma(T)$$
, then $r(T)e^{in\varphi} \in \sigma(T)$ for all $n \in \mathbb{Z}$.

イロト 不得 トイヨト イヨト 二日

As before, let \mathbb{X} be a Banach lattice, e.g. $\mathbb{X} = L^p(\Omega, \Sigma, \mu)$ or $\mathbb{X} = C(K)$.

3

イロト イヨト イヨト イヨト

As before, let \mathbb{X} be a Banach lattice, e.g. $\mathbb{X} = L^{p}(\Omega, \Sigma, \mu)$ or $\mathbb{X} = C(K)$.

Remark

The powers $\{T^n, n \in \mathbb{N}_0\}$ of an operator T form a discrete operator semigroup, *i.e.* $T^{n_1+n_2} = T^{n_1}T^{n_2}$.

3

イロト イヨト イヨト

As before, let X be a Banach lattice, e.g. $X = L^{p}(\Omega, \Sigma, \mu)$ or X = C(K).

Remark

The powers $\{T^n, n \in \mathbb{N}_0\}$ of an operator T form a discrete operator semigroup, *i.e.* $T^{n_1+n_2} = T^{n_1}T^{n_2}$.

This continuous analogue of the notion is:

Definition

A C₀-semigroup $(T(t))_{t\geq 0}$ on \mathbb{X} is a strongly continuous mapping $T : [0, \infty) \to \mathcal{L}(\mathbb{X})$ such that

$$T(0) = Id_{\mathbb{X}}, \quad T(t_1 + t_2) = T(t_1)T(t_2).$$

A C_0 -semigroup is called positive, if each operator T(t) is positive.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Remark

The set of all $x \in \mathbb{X}$ such that the limit $Ax := \lim_{t\to 0} \frac{T(t)x - T(0)x}{t}$ exists, is a dense linear subspace of \mathbb{X} . The operator A defined on this space is called the **infinitesimal generator** of the C₀-semigroup.

- 4 同 6 4 日 6 4 日 6

Remark

The set of all $x \in \mathbb{X}$ such that the limit $Ax := \lim_{t\to 0} \frac{T(t)x - T(0)x}{t}$ exists, is a dense linear subspace of \mathbb{X} . The operator A defined on this space is called the **infinitesimal generator** of the C₀-semigroup.

Note: Semigroups are a generalization of the matrix exponential function $T(t) = e^{tA}$.

Let $(T(t))_{t\geq 0}$ be positive C_0 -semigroup on \mathbb{X} .

(i) We have $s(A) := \sup\{\operatorname{Re} \lambda : \lambda \in \sigma(A)\} \in \sigma(A)$.

イロト イポト イヨト イヨト

Let $(T(t))_{t\geq 0}$ be positive C_0 -semigroup on \mathbb{X} .

(i) We have $s(A) := \sup\{\operatorname{Re} \lambda : \lambda \in \sigma(A)\} \in \sigma(A)$.

Furthermore, suppose that $||T(t)|| \le M e^{s(A)t}$ for a constant $M \ge 0$ and all $t \in [0, \infty)$. Then we also have:

(ii) Whenever $s(A) + i\beta \in \sigma(A)$, then $s(A) + in\beta \in \sigma(A)$ for all $n \in \mathbb{Z}$.

Let $(T(t))_{t\geq 0}$ be positive C_0 -semigroup on \mathbb{X} .

(i) We have $s(A) := \sup\{\operatorname{Re} \lambda : \lambda \in \sigma(A)\} \in \sigma(A)$.

Furthermore, suppose that $||T(t)|| \le M e^{s(A)t}$ for a constant $M \ge 0$ and all $t \in [0, \infty)$. Then we also have:

(ii) Whenever $s(A) + i\beta \in \sigma(A)$, then $s(A) + in\beta \in \sigma(A)$ for all $n \in \mathbb{Z}$.

Example

Let $X = L^2(\mathbb{R})$ and let $(T(t))_{t\geq 0}$ be the left shift semigroup, i.e. T(t)f(x) = f(x+t). One can prove that

• A is defined on the Sobolev space $H^1(\mathbb{R})$ and Af = f' for all $f \in H^1(\mathbb{R})$.

•
$$s(A) = 0$$
 and $\sigma(A) = i\mathbb{R}$.

Eventually positive operators and semigroups:

- An operator $T \in \mathcal{L}(\mathbb{X})$ is **eventually positive**, if T^n is positive for all $n \ge n_0$.
- A C₀-semigroup (T(t))_{t≥0} is eventually positive, if T(t) is positive for all t ≥ t₀.

Eventually positive operators and semigroups:

- An operator $T \in \mathcal{L}(\mathbb{X})$ is **eventually positive**, if T^n is positive for all $n \ge n_0$.
- A C₀-semigroup (T(t))_{t≥0} is eventually positive, if T(t) is positive for all t ≥ t₀.

Perron Frobenius Theory for eventually positive operators and semigroups:

• Results for the finite dimensional case were recently obtained, e.g. in [1] and [2].

[1] D. Noutsos, On Perron-Frobenius property of matrices having some negative entries, Linear Algebra Appl., 412 (2005), 132–153.

[2] D. Noutsos and M. Tsatsomeros, *Reachability and holdability of nonnegative states*, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 700–712.

イロト 不得 トイヨト イヨト 二日

Eventually positive operators and semigroups:

- An operator $T \in \mathcal{L}(\mathbb{X})$ is **eventually positive**, if T^n is positive for all $n \ge n_0$.
- A C₀-semigroup (T(t))_{t≥0} is eventually positive, if T(t) is positive for all t ≥ t₀.

Perron Frobenius Theory for eventually positive operators and semigroups:

- Results for the finite dimensional case were recently obtained, e.g. in [1] and [2].
- Currently: Investigation of the infinite dimensional case.

[1] D. Noutsos, On Perron-Frobenius property of matrices having some negative entries, Linear Algebra Appl., 412 (2005), 132–153.

[2] D. Noutsos and M. Tsatsomeros, *Reachability and holdability of nonnegative states*, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 700–712.

・ロト ・四ト ・ヨト ・ヨト ・ヨ