Eventual Positivity of Operator Semigroups

Jochen Glück

Ulm University

lwota 2014, July 14 - 18

based on joint work with W. Arendt, D. Daners and J. Kennedy

• • = • •

Assumptions throughout the talk:

- (i) Let E be a complex Banach lattice, e.g. E = C(K) for a compact space K, or E = L^p(Ω, Σ, μ).
- (ii) Let $(e^{tA})_{t\geq 0}$ be a C_0 -semigroup on E.

(日) (周) (三) (三)

Assumptions throughout the talk:

- (i) Let E be a complex Banach lattice, e.g. E = C(K) for a compact space K, or E = L^p(Ω, Σ, μ).
- (ii) Let $(e^{tA})_{t\geq 0}$ be a C_0 -semigroup on E.

Definition

The semigroup $(e^{tA})_{t\geq 0}$ is called...

- (i) ... positive, if $e^{tA}x \ge 0$ for all $x \ge 0$ and for all $t \ge 0$.
- (ii) ...uniformly eventually positive if there is a $t_0 \in [0, \infty)$ such that $e^{tA}x \ge 0$ for all $x \ge 0$ and for all $t \ge t_0$.
- (iii) ...individually eventually positive if for each $x \ge 0$ there is a $t_0 \in [0, \infty)$ such that $e^{tA}x \ge 0$ whenever $t \ge t_0$.

Example

Let $E = \mathbb{C}^3$ and let $\mathcal{B} = (u_1, u_2, u_3)$ be the orthonormal basis given by

$$u_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
, $u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$, $u_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\-2\\1 \end{pmatrix}$

Example

Let $E = \mathbb{C}^3$ and let $\mathcal{B} = (u_1, u_2, u_3)$ be the orthonormal basis given by

$$u_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
, $u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$, $u_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\-2\\1 \end{pmatrix}$

Let the representation matrix of e^{tA} with respect to the basis $\mathcal B$ be given by

$$\exp(t\begin{pmatrix} 0 & 0 & 0\\ 0 & -1 & -1\\ 0 & 1 & -1 \end{pmatrix}) = \begin{pmatrix} 1 & 0 & 0\\ 0 & e^{-t}\cos t & -e^{-t}\sin t\\ 0 & e^{-t}\sin t & e^{-t}\cos t \end{pmatrix}$$

Then $(e^{tA})_{t\geq 0}$ is individually eventually positive.

(本間) (本語) (本語) (語)

Remark

Let $E = \mathbb{C}^n$ and let $(e^{tA})_{t\geq 0}$ be individually eventually positive. For large t, we have $e^{tA}e_1 \geq 0, ..., e^{tA}e_n \geq 0$. Thus, e^{tA} is uniformly eventually positive.

- 4 同 ト 4 ヨ ト - 4 ヨ ト - -

Remark

Let $E = \mathbb{C}^n$ and let $(e^{tA})_{t\geq 0}$ be individually eventually positive. For large t, we have $e^{tA}e_1 \geq 0$, ..., $e^{tA}e_n \geq 0$. Thus, e^{tA} is uniformly eventually positive.

Example

Let E = C([-1,1]) and $F := \{f \in E : \int f \, d\lambda = 0\}$. Then $E = \langle \mathbb{1} \rangle \oplus F$.

• • • • • • • • • • • •

Remark

Let $E = \mathbb{C}^n$ and let $(e^{tA})_{t\geq 0}$ be individually eventually positive. For large t, we have $e^{tA}e_1 \geq 0$, ..., $e^{tA}e_n \geq 0$. Thus, e^{tA} is uniformly eventually positive.

Example

Let E = C([-1, 1]) and $F := \{f \in E : \int f d\lambda = 0\}$. Then $E = \langle 1 \rangle \oplus F$. Let *R* be the reflection operator on *F*, i.e.

 $Rf(\omega) = f(-\omega)$ for all $f \in E$ and for all $\omega \in [-1,1]$.

Then $\sigma(R) = \{-1, 1\}.$

Remark

Let $E = \mathbb{C}^n$ and let $(e^{tA})_{t\geq 0}$ be individually eventually positive. For large t, we have $e^{tA}e_1 \geq 0$, ..., $e^{tA}e_n \geq 0$. Thus, e^{tA} is uniformly eventually positive.

Example

Let E = C([-1, 1]) and $F := \{f \in E : \int f d\lambda = 0\}$. Then $E = \langle 1 \rangle \oplus F$. Let *R* be the reflection operator on *F*, i.e.

 $Rf(\omega) = f(-\omega)$ for all $f \in E$ and for all $\omega \in [-1, 1]$.

Then $\sigma(R) = \{-1, 1\}$. The operator

$$A = 0_{\langle \mathbb{1} \rangle} \oplus (R - 2 \operatorname{id}_F)$$

generates an individually eventually positive semigroup on E.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

The following theorem is well-known for positive semigroups.

Theorem

Let $(e^{tA})_{t\geq 0}$ be individually eventually positive with growth bound ω and spectral bound $s(A) := \sup\{\operatorname{Re} \lambda : \lambda \in \sigma(A)\}.$ (i) We always have $s(A) \in \sigma(A)$.

(ii) If E = C(K) or $E = L^1(\Omega, \Sigma, \mu)$ or E is a Hilbert space, then $s(A) = \omega$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

The following theorem is well-known for positive semigroups.

Theorem

Let $(e^{tA})_{t\geq 0}$ be individually eventually positive with growth bound ω and spectral bound $s(A) := \sup\{\operatorname{Re} \lambda : \lambda \in \sigma(A)\}.$

- (i) We always have $s(A) \in \sigma(A)$.
- (ii) If E = C(K) or $E = L^1(\Omega, \Sigma, \mu)$ or E is a Hilbert space, then $s(A) = \omega$.

Question

For positive semigroups, (ii) is also true on $E = L^p(\Omega, \Sigma, \mu)$ and on $E = C_0(L)$ for a locally compact space L. Does this remain true for (individually or uniformly) eventually positive semigroups?

イロト イポト イヨト イヨト 二日

Let E = C(K).

- (i) We write f > 0 if $f \ge 0$ and $f \ne 0$.
- (ii) We write $f \gg 0$ and say that f is strongly positive if $f(\omega) > 0$ for all $\omega \in K$.

(日) (同) (三) (三)

Let E = C(K).

- (i) We write f > 0 if $f \ge 0$ and $f \ne 0$.
- (ii) We write $f \gg 0$ and say that f is strongly positive if $f(\omega) > 0$ for all $\omega \in K$.

Definition

Let E = C(K). The semigroup $(e^{tA})_{t\geq 0}$ is called *individually eventually* strongly positive if for each f > 0 there is a $t_0 \in [0, \infty)$ such that $e^{tA}f \gg 0$ for all $t \geq t_0$.

(日) (周) (三) (三)

If e^{tA} is compact for large t, then the following assertions are equivalent:
(i) (e^{tA})_{t≥0} is individually eventually strongly positive.
(ii) s(A) is a simple and dominant eigenvalue of A and ker(s(A) - A) = ⟨u⟩ for some u ≫ 0.

Image: A Image: A

If e^{tA} is compact for large t, then the following assertions are equivalent:
(i) (e^{tA})_{t≥0} is individually eventually strongly positive.
(ii) s(A) is a simple and dominant eigenvalue of A and ker(s(A) - A) = ⟨u⟩ for some u ≫ 0.

A glimpse of the proof.

"(ii) \Rightarrow (i)" Assertion (ii) implies that the spectral projection P corresponding to s(A) is strongly positive and that $e^{tA} \rightarrow P$ as $t \rightarrow \infty$.

(日) (周) (三) (三)

If e^{tA} is compact for large t, then the following assertions are equivalent:
(i) (e^{tA})_{t≥0} is individually eventually strongly positive.
(ii) s(A) is a simple and dominant eigenvalue of A and ker(s(A) - A) = ⟨u⟩ for some u ≫ 0.

A glimpse of the proof.

"(ii) \Rightarrow (i)" Assertion (ii) implies that the spectral projection P corresponding to s(A) is strongly positive and that $e^{tA} \rightarrow P$ as $t \rightarrow \infty$. "(i) \Rightarrow (ii)" To see that s(A) is dominant:

- Split off the peripheral spectrum.
- Show that the corresponding restriction of the semigroup is positive.
- Apply Perron-Frobenius theory of positive semigroups.

イロト 不得下 イヨト イヨト 二日

Remark

- (i) Further characterizations involve the resolvent of A or the spectral projection corresponding to s(A).
- (ii) A generalization to arbitrary Banach lattices is possible under additional regularity assumptions on $(e^{tA})_{t\geq 0}$ and on the domain D(A).

Image: A image: A

Remark

- (i) Further characterizations involve the resolvent of A or the spectral projection corresponding to s(A).
- (ii) A generalization to arbitrary Banach lattices is possible under additional regularity assumptions on $(e^{tA})_{t\geq 0}$ and on the domain D(A).
- (iii) This generalization can be applied to study e.g. the semigroup generated by the bi-Laplacian on the disk in \mathbb{R}^2 .

< ロ > < 同 > < 三 > < 三

For $x \in E$, let $d_+(x) := \text{dist}(x, E_+)$ be the distance of x to the positive cone.

Definition

Suppose that s(A) = 0. The semigroup $(e^{tA})_{t \ge 0}$ is called...

- (i) ...uniformly asymptotically positive if for each $\varepsilon > 0$ there is a $t_0 \in [0, \infty)$ such that $d_+(e^{tA}x) \le \varepsilon ||x||$ for all $x \ge 0$ and for all $t \ge t_0$.
- (ii) ...individually asymptotically positive if $\lim_{t\to\infty} d_+(e^{tA}x) = 0$ for all $x \ge 0$.

A (10) < A (10) </p>

Suppose that s(A) = 0 and that $(e^{tA})_{t \ge 0}$ is bounded and eventually compact. Then the following assertions are equivalent:

- (i) $(e^{tA})_{t\geq 0}$ is individually asymptotically positive.
- (ii) $(e^{tA})_{t\geq 0}$ is uniformly asymptotically positive.
- (iii) s(A) is a dominant eigenvalue and the corresponding spectral projection P is positive.
- (iv) e^{tA} converges (in operator norm) to a positive mapping as $t \to \infty$.

イロト イヨト イヨト イヨト

Literature

For the finite dimensional case, see e.g.

- [1] D. Noutsos, On Perron-Frobenius property of matrices having some negative entries, Linear Algebra Appl., 412 (2005), 132-153.
- [2] D. Noutsos and M. Tsatsomeros, *Reachability and holdability of nonnegative states*, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 700–712.

For the Dirichlet-to-Neumann operator which motivated this work, see

[3] D. Daners, Non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator, Positivity, 18 (2014), 235-256.

For eventual positivity of the bi-Laplacian, see e.g.

[4] A. Ferrero, F. Gazzola, and H.-C. Grunau, *Decay and eventual local positivity for biharmonic parabolic equations*, Discrete Contin. Dyn. Syst., 21 (2008), 1129-1157.

(日) (周) (三) (三)