# Dilation Theorems on General Banach Spaces

Jochen Glück

Ulm University

Feldkirch, 6 May 2017

Joint work with Stephan Fackler (Ulm University)

Jochen Glück (Ulm University)

**Dilation Theorems** 

(注) く注) 注 少への 6 May 2017 1 / total

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Let  $\mathcal{X}$  be a class of Banach spaces and let  $X \in \mathcal{X}$ .

3

イロン 不聞と 不同と 不同と

Let  $\mathcal{X}$  be a class of Banach spaces and let  $X \in \mathcal{X}$ .

An operator  $T \in \mathcal{L}(X)$  is said to have a dilation within  $\mathcal{X}$  if there exist

3

Let  $\mathcal{X}$  be a class of Banach spaces and let  $X \in \mathcal{X}$ .

An operator  $T \in \mathcal{L}(X)$  is said to have a dilation within  $\mathcal{X}$  if there exist

• a Banach space  $Y \in \mathcal{X}$ ,

3

Let  $\mathcal{X}$  be a class of Banach spaces and let  $X \in \mathcal{X}$ .

An operator  $T \in \mathcal{L}(X)$  is said to have a dilation within  $\mathcal{X}$  if there exist

- a Banach space  $Y \in \mathcal{X}$ ,
- a bijective isometry  $V \in \mathcal{L}(Y)$ ,

3

Let  $\mathcal{X}$  be a class of Banach spaces and let  $X \in \mathcal{X}$ .

An operator  $T \in \mathcal{L}(X)$  is said to have a dilation within  $\mathcal{X}$  if there exist

- a Banach space  $Y \in \mathcal{X}$ ,
- a bijective isometry  $V \in \mathcal{L}(Y)$ ,
- linear contractions  $J: X \to Y$  and  $Q: Y \to X$

3

Let  $\mathcal{X}$  be a class of Banach spaces and let  $X \in \mathcal{X}$ .

An operator  $T \in \mathcal{L}(X)$  is said to have a dilation within  $\mathcal{X}$  if there exist

- a Banach space  $Y \in \mathcal{X}$ ,
- a bijective isometry  $V \in \mathcal{L}(Y)$ ,
- linear contractions  $J: X \to Y$  and  $Q: Y \to X$

such that the following diagram commutes for every exponent  $n \in \mathbb{N}_0$ :



Let  $\mathcal{X}$  be a class of Banach spaces and let  $X \in \mathcal{X}$ .

An operator  $T \in \mathcal{L}(X)$  is said to have a dilation within  $\mathcal{X}$  if there exist

- a Banach space  $Y \in \mathcal{X}$ ,
- a bijective isometry  $V \in \mathcal{L}(Y)$ ,
- linear contractions  $J: X \to Y$  and  $Q: Y \to X$

such that the following diagram commutes for every exponent  $n \in \mathbb{N}_0$ :



**Simple consequences:** T is contractive, J is isometric and  $JQ \in \mathcal{L}(Y)$  is a projection onto J(X).

Jochen Glück (Ulm University)

∃ 990

イロン 不聞と 不同と 不同と

If  ${\mathcal X}$  is the class of all Banach spaces, then every contraction has a dilation within  ${\mathcal X}!$ 

Construction

Given a  $X \in \mathcal{X}$  and a contraction  $T \in \mathcal{L}(X)$ , we may choose

3

If  ${\mathcal X}$  is the class of all Banach spaces, then every contraction has a dilation within  ${\mathcal X}!$ 

# Construction

Given a  $X \in \mathcal{X}$  and a contraction  $T \in \mathcal{L}(X)$ , we may choose

•  $Y := \ell^{\infty}(\mathbb{Z}; X)$  and  $V \in \mathcal{L}(Y)$  the left shift,

3

If  ${\mathcal X}$  is the class of all Banach spaces, then every contraction has a dilation within  ${\mathcal X}!$ 

## Construction

Given a  $X \in \mathcal{X}$  and a contraction  $T \in \mathcal{L}(X)$ , we may choose

- $Y := \ell^{\infty}(\mathbb{Z}; X)$  and  $V \in \mathcal{L}(Y)$  the left shift,
- $J: X \ni x \mapsto (\cdots, 0, 0, 0, x, Tx, T^2x, T^3, \cdots) \in Y$ ,

3

If  ${\mathcal X}$  is the class of all Banach spaces, then every contraction has a dilation within  ${\mathcal X}!$ 

## Construction

Given a  $X \in \mathcal{X}$  and a contraction  $T \in \mathcal{L}(X)$ , we may choose

- $Y:=\ell^\infty(\mathbb{Z};X)$  and  $V\in\mathcal{L}(Y)$  the left shift,
- $J: X \ni x \mapsto (\cdots, 0, 0, 0, x, Tx, T^2x, T^3, \cdots) \in Y$ ,
- $Q: Y \rightarrow X$  the projection onto the 0th component.

э.

If  $\mathcal X$  is the class of all Banach spaces, then every contraction has a dilation within  $\mathcal X!$ 

## Construction

Given a  $X \in \mathcal{X}$  and a contraction  $T \in \mathcal{L}(X)$ , we may choose

- $Y:=\ell^\infty(\mathbb{Z};X)$  and  $V\in\mathcal{L}(Y)$  the left shift,
- $J: X \ni x \mapsto (\cdots, 0, 0, 0, x, Tx, T^2x, T^3, \cdots) \in Y$ ,
- $Q: Y \rightarrow X$  the projection onto the 0th component.

Then  $T^n = QV^n J$  for all  $n \in \mathbb{N}_0$ .

э.

If  ${\mathcal X}$  is the class of all Banach spaces, then every contraction has a dilation within  ${\mathcal X}!$ 

## Construction

Given a  $X \in \mathcal{X}$  and a contraction  $T \in \mathcal{L}(X)$ , we may choose

• 
$$Y := \ell^\infty(\mathbb{Z}; X)$$
 and  $V \in \mathcal{L}(Y)$  the left shift,

• 
$$J: X \ni x \mapsto (\cdots, 0, 0, 0, x, Tx, T^2x, T^3, \cdots) \in Y$$
,

•  $Q: Y \to X$  the projection onto the 0th component.

Then  $T^n = QV^n J$  for all  $n \in \mathbb{N}_0$ .

The problem with this construction:  $\ell^{\infty}(\mathbb{Z}; X)$  does not inherit any good properties from X!

If  ${\mathcal X}$  is the class of all Banach spaces, then every contraction has a dilation within  ${\mathcal X}!$ 

## Construction

Given a  $X \in \mathcal{X}$  and a contraction  $T \in \mathcal{L}(X)$ , we may choose

• 
$$Y := \ell^\infty(\mathbb{Z}; X)$$
 and  $V \in \mathcal{L}(Y)$  the left shift,

• 
$$J: X \ni x \mapsto (\cdots, 0, 0, 0, x, Tx, T^2x, T^3, \cdots) \in Y$$
,

•  $Q: Y \to X$  the projection onto the 0th component.

Then  $T^n = QV^n J$  for all  $n \in \mathbb{N}_0$ .

The problem with this construction:  $\ell^{\infty}(\mathbb{Z}; X)$  does not inherit any good properties from X!

 $\Rightarrow$  Useless!

# Leitmotif

Jochen Glück (Ulm University)

Dilation Theorems

6 May 2017 4 / total

æ

イロト イポト イヨト イヨト

Leitmotif

Given a Banach space X and a contraction  $T \in \mathcal{L}(X)$ ,

Jochen Glück (Ulm University)

**Dilation Theorems** 

6 May 2017 4 / total

3

イロト イポト イヨト イヨト

# Leitmotif

Given a Banach space X and a contraction  $T \in \mathcal{L}(X)$ , choose a class of Banach spaces  $\mathcal{X}$  with similar regularity as X and ask:

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

# Leitmotif

Given a Banach space X and a contraction  $T \in \mathcal{L}(X)$ , choose a class of Banach spaces  $\mathcal{X}$  with similar regularity as X and ask:

Does T have a dilation within  $\mathcal{X}$ ?

# Examples

Jochen Glück (Ulm University)

Dilation Theorems

6 May 2017 5 / total

Ξ.

イロト イロト イヨト イヨト

# Examples

# (a) The Dilation Theorem of Sz.-Nagy:

Every contraction on a Hilbert space has a dilation within the class of Hilbert spaces.

B> B

# Examples

# (a) The Dilation Theorem of Sz.-Nagy: Every contraction on a Hilbert space has a dilation within the class of Hilbert spaces.

# (b) The Dilation Theorem of Akcoglu–Sucheston: Every positive contraction on $L^p$ has a dilation within the class of $L^p$ -spaces (with $p \in (1, \infty)$ fixed).

# Examples

# (a) The Dilation Theorem of Sz.-Nagy: Every contraction on a Hilbert space has a dilation within the class of Hilbert spaces.

# (b) The Dilation Theorem of Akcoglu–Sucheston: Every positive contraction on $L^p$ has a dilation within the class of $L^p$ -spaces (with $p \in (1, \infty)$ fixed).

# Some applications:

(a) von Neumann's inequality is a consequence of Sz.-Nagy's Dilation Theorem.

# Examples

# (a) The Dilation Theorem of Sz.-Nagy: Every contraction on a Hilbert space has a dilation within the class of Hilbert spaces.

# (b) The Dilation Theorem of Akcoglu-Sucheston: Every positive contraction on $L^p$ has a dilation within the class of $L^p$ -spaces (with $p \in (1, \infty)$ fixed).

# Some applications:

- (a) von Neumann's inequality is a consequence of Sz.-Nagy's Dilation Theorem.
- (b) The pointwise ergodic theorem is a consequence of the Akcoglu–Sucheston Dilation Theorem.

3

イロト 不得下 イヨト イヨト

э.

イロン 不聞と 不同と 不同と

Several proofs of the Akcoglu-Suchestion Dilation Theorem are known.

3

Several proofs of the Akcoglu-Suchestion Dilation Theorem are known.

• Each of them heavily exploits the structure of  $L^{p}$ -spaces.

B> B

4 6 1 1 4

Several proofs of the Akcoglu-Suchestion Dilation Theorem are known.

- Each of them heavily exploits the structure of L<sup>p</sup>-spaces.
- None of them can be adapted to general Banach spaces.

Several proofs of the Akcoglu–Suchestion Dilation Theorem are known.

- Each of them heavily exploits the structure of L<sup>p</sup>-spaces.
- None of them can be adapted to general Banach spaces.

#### Our Goal

Split the proof of dilation theorems into

Several proofs of the Akcoglu–Suchestion Dilation Theorem are known.

- Each of them heavily exploits the structure of L<sup>p</sup>-spaces.
- None of them can be adapted to general Banach spaces.

# Our Goal

Split the proof of dilation theorems into

(a) A structure theoretic part that works on general classes of Banach spaces.

Several proofs of the Akcoglu-Suchestion Dilation Theorem are known.

- Each of them heavily exploits the structure of L<sup>p</sup>-spaces.
- None of them can be adapted to general Banach spaces.

# Our Goal

Split the proof of dilation theorems into

- (a) A structure theoretic part that works on general classes of Banach spaces.
- (b) A geometric part where the properties of a concrete class of Banach spaces come into play.

Fix  $p \in (1, \infty)$  and let  $\mathcal{X}$  be a class of Banach spaces which fulfils the following properties:

3

イロト イポト イヨト イヨト

Fix  $p \in (1,\infty)$  and let  $\mathcal{X}$  be a class of Banach spaces which fulfils the following properties:

• X is *ultra stable*, i.e. each ultra product of a family of spaces in X is again contained in X.

3 × 4 3 ×

Image: A matrix and a matrix

Fix  $p \in (1, \infty)$  and let  $\mathcal{X}$  be a class of Banach spaces which fulfils the following properties:

- X is *ultra stable*, i.e. each ultra product of a family of spaces in X is again contained in X.
- If  $X \in \mathcal{X}$  and  $n \in \mathbb{N}$ , then the space  $\ell_n^p(X)$  is also in  $\mathcal{X}$ .

Image: A matrix and a matrix

Fix  $p \in (1, \infty)$  and let  $\mathcal{X}$  be a class of Banach spaces which fulfils the following properties:

- X is *ultra stable*, i.e. each ultra product of a family of spaces in X is again contained in X.
- If  $X \in \mathcal{X}$  and  $n \in \mathbb{N}$ , then the space  $\ell_n^p(X)$  is also in  $\mathcal{X}$ .
- Each space in  $\mathcal{X}$  is reflexive.

Image: A matrix of the second seco

Fix  $p \in (1, \infty)$  and let  $\mathcal{X}$  be a class of Banach spaces which fulfils the following properties:

- X is *ultra stable*, i.e. each ultra product of a family of spaces in X is again contained in X.
- If  $X \in \mathcal{X}$  and  $n \in \mathbb{N}$ , then the space  $\ell_n^p(X)$  is also in  $\mathcal{X}$ .
- Each space in  $\mathcal{X}$  is reflexive.

# Examples

Examples for  $\mathcal{X}$ :

(日) (周) (日) (日)

Fix  $p \in (1, \infty)$  and let  $\mathcal{X}$  be a class of Banach spaces which fulfils the following properties:

- X is *ultra stable*, i.e. each ultra product of a family of spaces in X is again contained in X.
- If  $X \in \mathcal{X}$  and  $n \in \mathbb{N}$ , then the space  $\ell_n^p(X)$  is also in  $\mathcal{X}$ .
- Each space in  $\mathcal{X}$  is reflexive.

# Examples

Examples for  $\mathcal{X}$ :

```
(a) The class of all L^p-spaces.
```

Fix  $p \in (1, \infty)$  and let  $\mathcal{X}$  be a class of Banach spaces which fulfils the following properties:

- X is *ultra stable*, i.e. each ultra product of a family of spaces in X is again contained in X.
- If  $X \in \mathcal{X}$  and  $n \in \mathbb{N}$ , then the space  $\ell_n^p(X)$  is also in  $\mathcal{X}$ .
- Each space in  $\mathcal{X}$  is reflexive.

# Examples

Examples for  $\mathcal{X}$ :

(a) The class of all  $L^p$ -spaces.

```
(b) The class of all Hilbert spaces (for p = 2).
```

Fix  $p \in (1, \infty)$  and let  $\mathcal{X}$  be a class of Banach spaces which fulfils the following properties:

- X is *ultra stable*, i.e. each ultra product of a family of spaces in X is again contained in X.
- If  $X \in \mathcal{X}$  and  $n \in \mathbb{N}$ , then the space  $\ell_n^p(X)$  is also in  $\mathcal{X}$ .
- Each space in  $\mathcal{X}$  is reflexive.

## Examples

Examples for  $\mathcal{X}$ :

- (a) The class of all  $L^p$ -spaces.
- (b) The class of all Hilbert spaces (for p = 2).
- (c) The class of all uniformly convex Banach spaces, subject to a quantitative restraint on the uniform convexity.

Let  $X \in \mathcal{X}$ . A set of operators  $\mathcal{T} \subseteq \mathcal{L}(X)$  is said to have simultaneous dilations within  $\mathcal{X}$  if

3

イロト イポト イヨト イヨト

Let  $X \in \mathcal{X}$ . A set of operators  $\mathcal{T} \subseteq \mathcal{L}(X)$  is said to have simultaneous dilations within  $\mathcal{X}$  if for each finite tuple  $T = (T_1, \ldots, T_n)$  of operators within  $\mathcal{T}$  there exist

3

Let  $X \in \mathcal{X}$ . A set of operators  $\mathcal{T} \subseteq \mathcal{L}(X)$  is said to have simultaneous dilations within  $\mathcal{X}$  if for each finite tuple  $T = (T_1, \ldots, T_n)$  of operators within  $\mathcal{T}$  there exist

• a Banach space  $Y \in \mathcal{X}$ ,

3

Let  $X \in \mathcal{X}$ . A set of operators  $\mathcal{T} \subseteq \mathcal{L}(X)$  is said to have simultaneous dilations within  $\mathcal{X}$  if for each finite tuple  $T = (T_1, \ldots, T_n)$  of operators within  $\mathcal{T}$  there exist

- a Banach space  $Y \in \mathcal{X}$ ,
- a tuple  $V = (V_1, ..., V_n)$  of bijective isometries in  $\mathcal{L}(Y)$ ,

Let  $X \in \mathcal{X}$ . A set of operators  $\mathcal{T} \subseteq \mathcal{L}(X)$  is said to have simultaneous dilations within  $\mathcal{X}$  if for each finite tuple  $T = (T_1, \ldots, T_n)$  of operators within  $\mathcal{T}$  there exist

- a Banach space  $Y \in \mathcal{X}$ ,
- a tuple  $V = (V_1, ..., V_n)$  of bijective isometries in  $\mathcal{L}(Y)$ ,
- linear contractions  $J: X \to Y$  and  $Q: Y \to X$

Let  $X \in \mathcal{X}$ . A set of operators  $\mathcal{T} \subseteq \mathcal{L}(X)$  is said to have simultaneous dilations within  $\mathcal{X}$  if for each finite tuple  $T = (T_1, \ldots, T_n)$  of operators within  $\mathcal{T}$  there exist

- a Banach space  $Y \in \mathcal{X}$ ,
- a tuple  $V = (V_1, ..., V_n)$  of bijective isometries in  $\mathcal{L}(Y)$ ,
- linear contractions  $J: X \rightarrow Y$  and  $Q: Y \rightarrow X$

such that the following diagram commutes for every non-commutative polynomial p in n variables:

$$\begin{array}{c} Y \xrightarrow{p(V)} Y \\ \downarrow \\ \downarrow \\ X \xrightarrow{p(T)} X \end{array}$$

Let  $X \in \mathcal{X}$ .

∃ 990

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let  $X \in \mathcal{X}$ .

# Remark

The set of all bijective isometries on X has simultaneous dilations within  $\mathcal{X}$ .

3

Let  $X \in \mathcal{X}$ .

## Remark

The set of all bijective isometries on X has simultaneous dilations within  $\mathcal{X}$ .

Proof: Let Y := X, define  $J := Q := id_X$  and choose  $(V_1, \ldots, V_n) = (T_1, \ldots, T_n)$ .

Let  $X \in \mathcal{X}$ .

## Remark

The set of all bijective isometries on X has simultaneous dilations within  $\mathcal{X}$ .

Proof: Let Y := X, define  $J := Q := id_X$  and choose  $(V_1, \ldots, V_n) = (T_1, \ldots, T_n)$ .

# Theorem

Let  $X \in \mathcal{X}$ .

## Remark

The set of all bijective isometries on X has simultaneous dilations within  $\mathcal{X}$ .

Proof: Let Y := X, define  $J := Q := id_X$  and choose  $(V_1, \ldots, V_n) = (T_1, \ldots, T_n)$ .

# Theorem

Suppose that  $\mathcal{T} \subseteq \mathcal{L}(X)$  has simultaneous dilations within  $\mathcal{X}$ . Then:

(a) The multiplicative semigroup generated by  $\mathcal{T}$  (i.e. the set  $\{T_1 \cdot \ldots \cdot T_n : T_1, \ldots, T_n \in \mathcal{T}\}$ ) has simultaneous dilations within  $\mathcal{X}$ .

Let  $X \in \mathcal{X}$ .

# Remark

The set of all bijective isometries on X has simultaneous dilations within  $\mathcal{X}$ .

Proof: Let Y := X, define  $J := Q := id_X$  and choose  $(V_1, \ldots, V_n) = (T_1, \ldots, T_n)$ .

# Theorem

- (a) The multiplicative semigroup generated by  $\mathcal{T}$  (i.e. the set  $\{T_1 \dots T_n : T_1, \dots, T_n \in \mathcal{T}\}$ ) has simultaneous dilations within  $\mathcal{X}$ .
- (b) The strong operator closure of  $\mathcal{T}$  has simultaneous dilations within  $\mathcal{X}$ .

Let  $X \in \mathcal{X}$ .

## Remark

The set of all bijective isometries on X has simultaneous dilations within  $\mathcal{X}$ .

Proof: Let Y := X, define  $J := Q := id_X$  and choose  $(V_1, \ldots, V_n) = (T_1, \ldots, T_n)$ .

# Theorem

- (a) The multiplicative semigroup generated by  $\mathcal{T}$  (i.e. the set  $\{T_1 \cdot \ldots \cdot T_n : T_1, \ldots, T_n \in \mathcal{T}\}$ ) has simultaneous dilations within  $\mathcal{X}$ .
- (b) The strong operator closure of  $\mathcal{T}$  has simultaneous dilations within  $\mathcal{X}$ .
- (c) The convex hull of  $\mathcal{T}$  has simultaneous dilations within  $\mathcal{X}$ .

Let  $X \in \mathcal{X}$ .

# Remark

The set of all bijective isometries on X has simultaneous dilations within  $\mathcal{X}$ .

Proof: Let Y := X, define  $J := Q := id_X$  and choose  $(V_1, \ldots, V_n) = (T_1, \ldots, T_n)$ .

# Theorem

- (a) The multiplicative semigroup generated by  $\mathcal{T}$  (i.e. the set  $\{T_1 \cdot \ldots \cdot T_n : T_1, \ldots, T_n \in \mathcal{T}\}$ ) has simultaneous dilations within  $\mathcal{X}$ .
- (b) The strong operator closure of  $\mathcal{T}$  has simultaneous dilations within  $\mathcal{X}$ .
- (c) The convex hull of  $\mathcal{T}$  has simultaneous dilations within  $\mathcal{X}$ .
- (d) Even the weak operator closure of  ${\mathcal T}$  has simultaneous dilations within  ${\mathcal X}.$

∃ 990

イロト イロト イヨト イヨト

# Corollary

Let  $X \in \mathcal{X}$ . The weakly closed convex hull of all bijective isometries on X has simultaneous dilations within  $\mathcal{X}$ .

э

・ 得 ト ・ ヨ ト ・ ヨ ト

# Corollary

Let  $X \in \mathcal{X}$ . The weakly closed convex hull of all bijective isometries on X has simultaneous dilations within  $\mathcal{X}$ .

# Our Goal

We have thus reached our goal to split the proof of dilation theorems:

3

・ 得 ト ・ ヨ ト ・ ヨ ト

# Corollary

Let  $X \in \mathcal{X}$ . The weakly closed convex hull of all bijective isometries on X has simultaneous dilations within  $\mathcal{X}$ .

# Our Goal

We have thus reached our goal to split the proof of dilation theorems:

(a) The above corollary is a structure theoretic result on general classes of Banach spaces.

・ 伺 ト ・ ヨ ト ・ ヨ ト

# Corollary

Let  $X \in \mathcal{X}$ . The weakly closed convex hull of all bijective isometries on X has simultaneous dilations within  $\mathcal{X}$ .

# Our Goal

We have thus reached our goal to split the proof of dilation theorems:

- (a) The above corollary is a structure theoretic result on general classes of Banach spaces.
- (b) One still has to find the weakly closed convex hull of all bijective isometries on X which depends on the geometry of X.

3

# Corollary

Let  $X \in \mathcal{X}$ . The weakly closed convex hull of all bijective isometries on X has simultaneous dilations within  $\mathcal{X}$ .

# Our Goal

We have thus reached our goal to split the proof of dilation theorems:

- (a) The above corollary is a structure theoretic result on general classes of Banach spaces.
- (b) One still has to find the weakly closed convex hull of all bijective isometries on X which depends on the geometry of X.

# Example

All positive contractions on  $L^{p}([0,1])$  (and more generally, on every  $L^{p}$ -space) have simultaneous dilations within the class of all  $L^{p}$ -spaces.