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The Spectrum of Positive Matrices

Theorem (Perron–Frobenius)

Let T ∈ Rd×d be such that T ≥ 0.
(a) The spectral radius r(T ) is an element of the spectrum σ(T ).
(b) There exists a positive eigenvector for r(T ).
(c) The peripheral spectrum

σper(T ) := {λ ∈ σ(T ) : |λ| = r(T )}

is cyclic, i.e. if r(T )e iθ ∈ σper(T ), then r(T )e inθ ∈ σper(T ) for all
n ∈ Z.

(d) And many more. . .
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Generalisations

Similar results remain true (under appropriate technical assumptions)

(a) if T is only eventually positive, i.e. T n ≥ 0 for all sufficiently large n
(extensive literature, cf. [Glü17b, Section 1] for a brief overview)
or

(b) if T is a positive operator on a Banach lattice (cf. [Sch74, Chapter 5]).

Observation
Nobody has combined these two approaches, yet.
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Notions of Eventual Positivity

Definition
A bounded linear operator T on a Banach lattice E is called. . .

(a) uniformly eventually positive if the inequality

T n ≥ 0

holds whenever n is larger than an appropriate n0.
(b) individually eventually positive if, for all x ∈ E+, the inequality

T nx ≥ 0

holds whenever n is larger than an appropriate n0 (where n0 might
depend on x).
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Remarks

There are even more interesting notions, e.g.

weak eventual positivity: consider the inequality 〈x ′,T nx〉 ≥ 0 for
x , x ′ ≥ 0 and let n0 depend on both x and the functional x ′.
asymptotic positivity: consider the condition dist(T nx ,E+)

n→∞→ 0 for
x ∈ E+.

In infinite dimensions: ind. eventual positivity 6⇒ unif. eventual positivity.

Counterexample (idea)
Let E = C ([0, 1]) and construct T non-positive such that for each f ∈ E

T nf →
∫ 1

0
f (x) dx · 1 (n→∞).

If f ≥ 0, then T nf ≥ 0 for all large n, but: this might happen very late if∫ 1
0 f (x) dx is small compared to ‖f ‖∞.
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The Spectrum of Eventually Positive Operators

Theorem (G., in [Glü17b])

Let T be a bounded linear operator on a non-zero Banach lattice E .
Assume that T is individually eventually positive and that r(T ) > 0.
(a) We have r(T ) ∈ σ(T ).
(b) If T is compact, then r(T ) is an eigenvalue of T with a positive

eigenvector.
(c) If T is even uniformly eventually positive and if T/r(T ) is

power-bounded, then the peripheral spectrum of T is cyclic.

Ideas for the proof.
(a) A (subtle) resolvent estimate.
(b) Laurent expansion of the resolvent about r(T ).
(c) Associate a positive operator S to the operator T by means of an ultra
power argument.
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C0-semigroups.

Let E be a Banach lattice and let u ∈ E+ be a quasi-interior point.

Notation: f �u 0 :⇔ ∃ε > 0 : f ≥ εu.

Theorem (Daners, G., Kennedy, [DGK16a])

Let (etA)t≥0 be an analytic C0-semigroup on E . Assume that etA is
compact for one (equivalently all) t > 0 and that D(An) ⊆

⋃
c>0[−cu, cu]

for some n ∈ N. Equivalent:
(a) The semigroup has the following eventual positivity property:

∀f ∈ E+ \ {0} ∃t0 ≥ 0 ∀t ≥ t0 : etAf �u 0.

(b) The spectral bound s(A) is a dominant spectral value of A; moreover,
ker(s(A)− A) is spanned by a vector v �u 0 and ker(s(A)− A′)
contains a strictly positive functional.
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Remarks.

(a) One can also relate the above properties (a) and (b) to properties of
the resolvent and to the spectral projection associated with s(A).

(b) One can vary the assumptions of the theorem (e.g. analyticity) in
several ways.

That’s all certainly nice – but is it useful?
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Consider again the assertion (a):

∀f > 0 ∃t0 ≥ 0 ∀t ≥ t0 : etAf �u 0.

Example 1.

Let Ω ⊆ Rd be the unit ball. Consider the Cauchy problem
ẇ = −∆2w in B,

w |∂Ω = ∂
∂νw = 0

+ initial condition.

Then the associated semigroup on Lp(Ω) (1 < p <∞) fulfils (a), where
u(x) = dist(x , ∂Ω)2 for all x ∈ Ω. But the semigroup is not positive.

Proof.
It follows from work of Grunau and Sweers [GS98] that −∆2 (with the
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Consider again the assertion (a):

∀f > 0 ∃t0 ≥ 0 ∀t ≥ t0 : etAf �u 0.

Example 2.

Consider the following heat equation with non-local boundary conditions:
ẇ = ∆w in (0, 1),

w(0) + w(1) = w ′(0) = −w ′(1)

+ initial condition.

Then the associated semigroup on L2((0, 1)) fulfils (a), where u = 1(0,1).
But the semigroup ist not positive.

Sketch of the proof.
Let ∆ denote the Laplace operator with the above boundary conditions.
Explicit computation: (−∆)−1f �u 0 whenever 0 6= f ≥ 0.
Krĕın–Rutman type argument ⇒ condition (b) in the theorem holds.
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The state of the art.

What do we know?
Characterisations and properties of (certain types of) individual
eventual positivity for C0-semigroup – under strong a priori
assumptions on the spectrum [DGK16b, DGK16a, DGa].
First steps towards a perturbation theory of eventual positivity
[SA17, DGb].
Spectral results for eventually positive operators – under quite weak
assumptions [Glü17b].
A large variety of applications [DGK16b, DGK16a, Glü17a]; see also
[Dan14].

Work in progress:
Characterisation of uniform eventual positivity for C0-semigroups –
under strong a priori assumptions on the spectrum.
Analysis of eventual positivity for Dirichlet-to-Neumann operators on
metric graphs.
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The state of the art.

What do we not know, yet? – Open problems:

Consider the line s(A) + iR. Characterise eventual positivity of
(etA)t≥0 if there exist essential spectral values and/or inifinitely many
spectral values on this line.
Can one obtain cyclicity results for the spectrum of eventually positive
semigroups?
Develop the perturbation theory of eventually positive semigroups
until it reaches a satisfactory state.

Your turn!
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