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Linear evolution equations

Consider the initial value problem{
u̇(t) = Au(t),

u(0) = u0

on a Banach space E .

Here:

A : E ⊇ dom(A)→ E is a linear operator.
u0 ∈ E is an initial value.
u : [0,∞)→ E is the function wanted.

Example (The heat equation)

E = L1(Ω) for a “nice” domain Ω ⊆ Rd and A is the Laplace operator
(with boundary conditions).
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Operator semigroups

Suppose that {
u̇(t) = Au(t),

u(0) = u0

“has a solution” u : [0,∞)→ E for every u0 ∈ E .

For t ≥ 0 we define a linear operator T (t) : E → E by T (t)u0 = u(t).

Properties:
(a) T (0) = idE .
(b) T (t + s) = T (t)T (s) for all t, s ≥ 0.

Definition
A family (T (t))t≥0 of linear operators on E is called a operator semigroup
if it fulfils (a) and (b).
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Long time behaviour

Consider a solution u : [0,∞)→ E of{
u̇(t) = Au(t),

u(0) = u0.

Problem
Does u(t) converge as t →∞?

Equivalently: Does T (t)u0 converge as t →∞?

Definition
An operator semigroup (T (t))t≥0 is called. . .
(a) . . . strongly convergent if limt→∞ T (t)u0 exists for every u0 ∈ E .
(b) . . .norm convergent if limt→∞ T (t) exists with respect to the

operator norm.
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Positive semigroups

Let E = Lp(Ω, µ) or E = C (K ) (or, more generally, let E be a Banach
lattice).

Definition
An operator semigroup (T (t))t≥0 on E is called positive if T (t)f ≥ 0 for
all 0 ≤ f ∈ E and all t ≥ 0.

Interpretation: If (T (t))t≥0 describes the solutions of{
u̇(t) = Au(t),

u(0) = u0,

then positivity of (T (t))t≥0 means that positive initial values lead to
positive solutions.
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Example:

If (T (t))t≥0 describes the solutions of the heat equation{
u̇(t) = ∆u(t),

u(0) = u0,

on L1(Ω) (for “nice” Ω ⊆ Rd and with “nice” boundary conditions), then
(T (t))t≥0 is positive.
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Convergence I: Compact semigroups

Let E = Lp(Ω, µ) or E = C (K ) (or, more generally, let E be a Banach
lattice).

Theorem (Lotz 1986 [Lot86])
Let (T (t))t≥0 be a positive semigroup on E such that
(a) supt≥0 ‖T (t)‖ <∞.
(b) T (t0) is a compact operator for some t0 ≥ 0.
Then (T (t))t≥0 is norm convergent.

Example

The heat equation on C (Ω) (for bounded Ω ⊆ Rd with Lipschitz boundary)
with non-local Robin boundary conditions, compare [AKK, Thms A.1
and 6.3]
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Convergence 2: Integral semigroups

Let E = Lp(Ω, µ) (or, more generally, let E be a Banach lattice with order
continuous norm).

Theorem (Greiner 1982 [Gre82], Gerlach & G. 2017 [GGa, GGb])
Let (T (t))t≥0 be a positive semigroup on E such that
(a) supt≥0 ‖T (t)‖ <∞.
(b) T (t0) is an integral operator for some t0 ≥ 0.
(c) (T (t))t≥0 has a fixed point f0 which is > 0 almost everywhere.
Then (T (t))t≥0 is strongly convergent.

Example
The solution of the heat equation on L1(Ω) with Neumann boundary
conditions is strongly convergent for bounded Ω ⊆ Rd even if the boundary
of Ω is “rough”; see [Are08].
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Convergence 3: Partially integral semigroups

Let E = Lp(Ω, µ).

Theorem (Rudnicki & Pichór 2000 [PR00], Gerlach 2013 [Ger13],
Gerlach & G. 2017 [GGa, GGb])
Let (T (t))t≥0 be a positive semigroup on E such that
(a) supt≥0 ‖T (t)‖ ≤ 1.
(b) T (t0) dominates an integral operator 0 6= K ≥ 0 for some t0 ≥ 0.
(c) The fixed space of (T (t))t≥0 is one-dimensional and contains a

function f0 which is > 0 almost everywhere.
Then (T (t))t≥0 is strongly convergent.

Example
Models from mathematical biology, e.g. the dynamics of immune states
[DdGKT].
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(a) supt≥0 ‖T (t)‖ ≤ 1.

(b) T (t0) dominates an integral operator 0 6= K ≥ 0 for some t0 ≥ 0.
(c) The fixed space of (T (t))t≥0 is one-dimensional and contains a

function f0 which is > 0 almost everywhere.
Then (T (t))t≥0 is strongly convergent.
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If a network flow on a metric graph is buffered in at least one vertex, then
the flow is strongly convergent.
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