

Universität Ulm

Abgabe: Montag, 29.04.2013

Dr. Gerhard Baur Jochen Glück Sommersemester 2013

Lösungen Einführung in die Variationsrechnung II: Blatt 1

1. Sei $G \subset \mathbb{R}^{2n+1}$ ein Gebiet, $f: G \to \mathbb{R}$ zweimal stetig differenzierbar und

$$I(x) = \int_a^b f(t, x(t), \dot{x}(t)) dt$$

für zulässige Funktionen $x : [a, b] \to \mathbb{R}$ mit $x \in \mathcal{R}$.

Zeigen Sie: Wenn $f(t,\cdot,\cdot)$ für jedes feste $t\in[a,b]$ konvex ist, dann gilt für jedes zulässige $x\in\mathcal{R}$ und jede zulässige Variation η , dass $\partial^2 I(x;\eta)\geq 0$.

Lösung: Für jedes $(t, x, \dot{x}) \in G$ sei $H(t, x, \dot{x})$ die Hessematrix der Abbildung $f(t, \cdot, \cdot)$ an der Stelle (x, \dot{x}) . Wegen der Konvexität von f ist $H(t, x, \dot{x})$ für alle $(t, x, \dot{x}) \in G$ positiv semidefinit.

Für jedes zulässige $x:[a,b]\to\mathbb{R}$ und jede zulässige Variation η gilt dann

$$\partial^2 I(x;\eta) = \int_a^b \left(\eta(t) \,, \, \dot{\eta}(t) \right) \, H(t,x(t),\dot{x}(t)) \, \begin{pmatrix} \eta(t) \\ \dot{\eta}(t) \end{pmatrix} \mathrm{d}t \, \geq 0.$$

Damit ist die Behauptung bewiesen.

2. Sei k > 0, $\omega \in \mathbb{R} \setminus \{0\}$. Wir setzen $f : \mathbb{R}^3 \to \mathbb{R}$, $f(t, x, \dot{x}) = \cos(kx - \omega t)\dot{x}$. Zudem sei $x_b \in \mathbb{R}$. Wir suchen eine einmal stetig differenzierbare Funktion $x : [0, 2\pi] \to \mathbb{R}$, welche das Variationsproblem

$$I(x) = \int_0^{2\pi} f(t, x(t), \dot{x}(t)) dt = \min, \quad x(0) = 0, x(2\pi) = x_b$$

löst.

(a) Leiten Sie die Euler-Lagrange-Gleichung für das Variationsproblem her und finden Sie heraus, für welche rechten Randwerte x_b die Euler-Lagrange-Gleichung eine Lösung besitzt.

Bestimmen sie die Lösung der Euler-Lagrange-Gleichung für die
jenigen x_b , für die sie existiert.

Lösung: Die Euler-Lagrange-Gleichung lautet $\frac{d}{dt} \frac{\partial}{\partial \dot{x}} f(t, x, \dot{x}) = \frac{\partial}{\partial x} f(t, x, \dot{x})$. Für unsere Funktion f erhalten wir:

$$\frac{\partial}{\partial x} f(t, x, \dot{x}) = -\sin(kx - \omega t)k\dot{x},$$

$$\frac{\partial}{\partial \dot{x}} f(t, x, \dot{x}) = \cos(kx - \omega t),$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial}{\partial \dot{x}} f(t, x, \dot{x}) = -\sin(kx - \omega t)(k\dot{x} - \omega).$$

Einsetzen in die Euler-Lagrange-Gleichung liefert somit.

$$\omega \sin(kx - \omega t) = 0.$$

Wegen $\omega \neq 0$ folgt $kx - \omega t \in \pi \mathbb{Z}$. Weil aber $kx - \omega t$ stetig von t abhängen muss, gibt es ein $n \in \mathbb{Z}$ mit $kx - \omega t = \pi n$ für alle $t \in [0, 2\pi]$.

Aus der Randbedingung x(0)=0 folgt nun n=0, also ist $x=\frac{\omega}{k}t=vt$, wobei wir $v=\frac{\omega}{k}$ gesetzt haben. Notwendig und hinreichend dafür, dass die Euler-Lagrange-Gleichung zusammen mit den Nebenbedingungen gelöst werden kann, ist also offenbar $x_b=2\pi v=2\pi\frac{\omega}{k}$ und in diesem Fall ist die Lösung durch x(t)=vt gegeben.

(b) Sei nun x_b derart, dass die Euler-Lagrange-Gleichung eine Lösung \overline{x} besitzt. Sei η eine zulässige Variation. Berechnen Sie die zweite Variation $\partial^2 I(\overline{x};\eta)$.

Diskutieren sie das Vorzeichen der zweiten Variation in Abhängigkeit von der Größe $v:=\frac{\omega}{k}$.

Lösung: Sei also $x_b = 2\pi v$ und $\overline{x}(t) = vt$. Wir berechnen:

$$f_{xx}(t, x, \dot{x}) = -\cos(kx - \omega t)k^{2}\dot{x} \qquad \Rightarrow \qquad f_{xx}(t, \overline{x}(t), \dot{\overline{x}}(t)) = -k^{2}v,$$

$$f_{x\dot{x}}(t, x, \dot{x}) = -\sin(kx - \omega x)k \qquad \Rightarrow \qquad f_{x\dot{x}}(t, \overline{x}(t), \dot{\overline{x}}(t)) = 0,$$

$$f_{\dot{x}\dot{x}}(t, x, \dot{x}) = 0 \qquad \Rightarrow \qquad f_{\dot{x}\dot{x}}(t, \overline{x}(t), \dot{\overline{x}}(t)) = 0.$$

Damit erhalten wir für jede zulässige Variation η :

$$\begin{split} \partial^2 I(\overline{x}, \eta) &= \\ &= \int_a^b f_{xx}(t, \overline{x}(t), \dot{\overline{x}}(t)) \ \eta^2(t) \ + \ 2 f_{x\dot{x}}(t, \overline{x}(t), \dot{\overline{x}}(t)) \ \eta(t) \dot{\eta}(t) \ + \ f_{\dot{x}\dot{x}}(t, \overline{x}(t), \dot{\overline{x}}(t)) \ \dot{\eta}^2(t) \ \mathrm{d}t \\ &= \int_a^b -k^2 v \eta^2(t) \, \mathrm{d}t = -k^2 v \int_a^b \eta^2(t) \, \mathrm{d}t. \end{split}$$

Falls v > 0 ist, gilt also für alle zulässigen Variationen η , dass $\partial^2 I(\overline{x}, \eta) \leq 0$ und falls v < 0 ist, gilt für alle zulässigen Variationen η , dass $\partial^2 I(\overline{x}, \eta) \geq 0$.

3. Seien $P,Q,R:[a,b]\to\mathbb{R}^{n\times n}$ stetig und P(t),Q(t),R(t) symmetrisch für alle $t\in[a,b]$. Wir setzen $f:\mathbb{R}^{2n+1}\to\mathbb{R},\ f(t,x,\dot{x})=x^TQ(t)x+2x^TR(t)\dot{x}+\dot{x}^TP(t)\dot{x}$ und betrachten das Minimierungsproblem

(*)
$$I(x) = \int_{a}^{b} f(t, x(t), \dot{x}(t)) dt = \min, \quad x(a) = 0, x(b) = 0$$

für $x \in C^1([a, b])$.

(a) Zeigen Sie, dass $\partial^2 I(x;\eta) = 2I(\eta)$ für alle zulässigen x und alle zulässigen Variationen η .

Lösung: Es gilt

$$f(t, x, \dot{x}) = \begin{pmatrix} x & \dot{x} \end{pmatrix} \begin{pmatrix} Q(t) & R(t) \\ R(t) & P(t) \end{pmatrix} \begin{pmatrix} x \\ \dot{x} \end{pmatrix},$$

also ist die Hesse-Matrix $H(t, x, \dot{x})$ der Abbildung $f(t, \cdot, \cdot)$ an der Stelle (x, \dot{x}) gegeben durch

$$H(t,x,\dot{x}) = 2 \begin{pmatrix} Q(t) & R(t) \\ R(t) & P(t) \end{pmatrix}.$$

Man beachte, dass die Hessematrix H(t) hier nicht von der Stelle (x, \dot{x}) abhängt. Somit gilt für jedes zulässige x und jede zulässige Variation η , dass

$$\partial^{2}I(x;\eta) = \int_{a}^{b} \left(\eta(t), \dot{\eta}(t)\right) 2H(t, x(t), \dot{x}(t)) \begin{pmatrix} \eta(t) \\ \dot{\eta}(t) \end{pmatrix} dt =$$

$$= \int_{a}^{b} \left(\eta(t), \dot{\eta}(t)\right) 2 \begin{pmatrix} Q(t) & R(t) \\ R(t) & P(t) \end{pmatrix} \begin{pmatrix} \eta(t) \\ \dot{\eta}(t) \end{pmatrix} dt = 2 \int_{a}^{b} f(t, \eta(t), \dot{\eta}(t)) dt = 2I(\eta).$$

(b) Folgern Sie: Falls \overline{x} ein globales Minimum von (*) ist, so gilt $I(\overline{x}) = 0$.

Lösung: Wenn \overline{x} ein globales Minimum von (*) ist, dann ist \overline{x} insbesondere eine schwache lokale Lösung von (*). Nach Vorlesung folgt dann $\partial^2 I(\overline{x};\eta) \geq 0$ für jede zulässige Variation η und nach Teilaufgabe (a) ist folglich

$$I(\eta) = \frac{1}{2} \partial^2 I(\overline{x}; \eta) \ge 0$$

für jede zulässige Variation η . Nun ist aber jedes zulässige x, dass die vorgegebenen Randbedingungen x(a) = x(b) = 0 erfüllt, auch selbst eine zulässige Variation. Somit ist $I(x) \ge 0$ für jedes zulässige x, welches die Randbedingungen erfüllt.

Zuletzt bemerken wir, dass $\hat{x}=0$ eine zulässige Funktion ist und die Randbedingugen erfüllt. Es gilt $I(\hat{x})=0$. Also ist $\hat{x}=0$ ein globales Minimum für (*), und weil auch \overline{x} ein globales Minimum von (*) ist, folgt $I(\overline{x})=I(\hat{x})=0$.