

Universität Ulm

Abgabe: Donnerstag, 04.05.2017

Prof. Dr. Wolfgang Arendt

Dr. Jochen Glück Sommersemester 2017 Punktzahl: 10

Übungen Analysis 1: Blatt 2

Für dieses Blatt und alle nachfolgenden Blätter definieren wir $\mathbb{N}_0 := \{0, 1, 2, 3, ...\}$, d.h. \mathbb{N}_0 enthält genau alle natürlichen Zahlen und die 0.

- 1. Beweisen oder widerlegen Sie:
 - (a) Sei $n \in \mathbb{N}$. Dann gilt $\sum_{k=0}^{n} (-1)^k {n \choose k} = 0$. (1)
 - (b) Sei $x \in \mathbb{R}$. Wenn x + x = 0 gilt, dann ist x = 0. (1)
 - (c) Sei K ein Körper und $x \in K$. Wenn x + x = 0 gilt, dann ist x = 0. (1)
- **2.** Für jedes $n \in \mathbb{N}$ und jedes $k \in \mathbb{N}_0$ mit $k \le n$ haben Sie in der Vorlesung den Binomialkoeffizienten $\binom{n}{k}$ definiert. Außerdem definiert man $\binom{0}{0} := 1$, sodass also $\binom{n}{k}$ für alle $n, k \in \mathbb{N}_0$ mit $k \le n$ definiert ist.
 - (a) Zeigen Sie: Für alle $n, k \in \mathbb{N}_0$ mit $k \le n$ gilt $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. (2)
 - (b) Zeigen Sie: Für alle $n, k \in \mathbb{N}_0$ mit $k \le n$ gilt $\binom{n}{k} = \binom{n}{n-k}$. (1)
- 3. Sei K ein Körper mit nur endlich vielen Elementen. Für jedes $x \in K$ und jedes $n \in \mathbb{N}$ definieren wir $nx := \sum_{k=1}^{n} x$.
 - (a) Sei $x \in K$. Zeigen Sie, dass es zwei verschiedene Zahlen $m, n \in \mathbb{N}$ gibt, für welche mx = nx (1) gilt.
 - (b) Sei $x \in K$. Zeigen Sie, dass es eine Zahl $n \in \mathbb{N}$ mit der Eigenschaft nx = 0 gibt. (1)
 - (c) Zeigen Sie, dass es keine Ordnungsrelation auf K gibt, die K zu einem angeordneten Körper (2) macht.

Weitere Aufgaben für Sie zum Üben:

- **4.** (a) Gilt die Binomialformel aus der Vorlesung auch für n = 0?
 - (b) Zeigen Sie, dass $\binom{n}{n} = 1$ für alle $n \in \mathbb{N}_0$ gilt.
 - (c) Seien $n, k \in \mathbb{N}_0$ mit k < n. Zeigen Sie, dass $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$ gilt.
 - (d) Benutzen Sie die Teilaufgaben (b) und (c), um per Hand aber möglichst effizient für alle Tupel (n,k) mit $n \in \{0,1,2,...,7\}$ und $k \in \{0,...,n\}$ den Binomialkoeffizienten $\binom{n}{k}$ zu bestimmen.
- 5. (a) Finden Sie eine mengentheoretische Interpretation der Aussage in Aufgabe 2(b) auf diesem Blatt.
 - (b) Eine endliche Menge M habe n Elemente. Wieviele Teilmengen besitzt M?
- **6.** Sie $p \in \mathbb{R}$ und $n \in \mathbb{N}$. Berechnen Sie die beiden Summen

$$\sum_{k=0}^{n} p^{k} (1-p)^{n-k} \quad \text{and} \quad \sum_{k=0}^{n} {n \choose k} p^{k} (1-p)^{n-k}.$$