

Universität Ulm

Abgabe: Freitag, 07.07.2017

Dr. Jochen Glück Marius Müller Fabian Rupp Sommersemester 2017

Punktzahl: 11+5*

Übungen Elemente der Funktionalanalysis: Blatt 11

- **28.** Sei $I \subseteq \mathbb{R}$ ein offenes Intervall und sei $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Beweisen Sie Theorem 3.1.13, d.h. zeigen Sie, (5*) dass $\langle \cdot, \cdot \rangle_{H^k}$ ein Skalarprodukt auf $H^k(I; \mathbb{K})$ ist und dass $(H^k(I; \mathbb{K}), \langle \cdot, \cdot \rangle_{H^k})$ ein Hilbertraum ist.
- **29.** Sei $I \subseteq \mathbb{R}$ ein beschränktes, offenes Intervall, sei $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ und sei $[u] \in H_0^1(I; \mathbb{K})$. Zeigen Sie die (3) sogenannte Poincaré-Ungleichung:

$$\langle [u], [u] \rangle_{L^2(I;\mathbb{K})} \le |I|^2 \langle [u]', [u]' \rangle_{L^2(I;\mathbb{K})},$$

wobei |I| die Länge von I bezeichnet.

Tipp: Verwenden Sie Proposition 3.1.14 um zunächst eine Abschätzung für die ∞ -Norm des stetigen Repräsentanten von [u] herzuleiten.

30. Sei V ein Vektorraum über $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ und seien $\|\cdot\|_1$ und $\|\cdot\|_2$ zwei Normen auf V. Die beiden Normen $\|\cdot\|_1$ und $\|\cdot\|_2$ heißen $\ddot{a}quivalent$, wenn es reelle Zahlen c, C > 0 mit der Eigenschaft

$$c||v||_1 \le ||v||_2 \le C||v||_1$$
 für alle $v \in V$

gibt.

- (a) Zeigen Sie: Wenn die Normen $\|\cdot\|_1$ und $\|\cdot\|_2$ äquivalent sind und wenn $(V, \|\cdot\|_1)$ ein (4) Banachraum ist, dann ist auch $(V, \|\cdot\|_2)$ ein Banachraum.
- (b) Sei nun $I \subseteq \mathbb{R}$ ein offenes, beschränktes Intervall und sei $V = H_0^1(I; \mathbb{K})$. Zur Erinnerung: Für alle $[u], [v] \in H^1(I; \mathbb{K})$ (und somit insbesondere für alle [u], [v] in $H_0^1(I; \mathbb{K})$) ist

$$\langle [u], [v] \rangle_{H^1} := \langle [u], [v] \rangle_{L^2} + \langle [u]', [v]' \rangle_{L^2}.$$

Zudem ist

$$\langle [u], [v] \rangle_{H_0^1} := \langle [u]', [v]' \rangle_{L^2}$$

für alle $[u], [v] \in H_0^1(I; \mathbb{K}).$

Zeigen Sie, dass, wie in Korollar 3.1.20 behauptet, $\langle \cdot, \cdot \rangle_{H_0^1}$ ein Skalarprodukt auf $H_0^1(I; \mathbb{K})$ ist und dass $(H_0^1(I; \mathbb{K}), \langle \cdot, \cdot \rangle_{H_0^1})$ ein Hilbertraum ist.

Tipp: Verwenden Sie die Poincaré-Ungleichung und Teilaufgabe (a).