

Universität Ulm

Deadline: Thursday, 2 November 2017

Prof. Dr. Wolfgang Arendt Dr. Jochen Glück Winter term 2017/18Points: $22 + 5^*$

(1)

(1)

(3)

(2)

Exercise Course in Functional Analysis: Problem Sheet 2

- 6. Let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.
 - (a) Let V be a normed vector space over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ and let $U \subseteq V$ be a dense vector subspace. (2) We endow U with the norm induced by V and consider U as a normed space in its own right. Define the mapping $T: V' \to U'$ by

$$T(\varphi) = \varphi|_U$$
 for all $\varphi \in V'$;

here, $\varphi|_U$ denotes the restriction of the mapping φ to U. Prove that T is an isometric isomorphism.

(b) We endow that space

$$c_{00} := \{ x = (x_n)_{n \in \mathbb{N}} \subseteq \mathbb{K} : \text{ all but finitely many } x_n \text{ are } 0 \}$$

with the norm $||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$. Show that the dual spaces $(c_0)'$ and $(c_{00})'$ are isometrically isomorphic.

- 7. Let E be a Banach space over \mathbb{C} and let $P \in \mathcal{L}(E)$ be a projection, meaning that $P^2 = P$.
 - (a) Prove that either P = 0 or $||P|| \ge 1$.
 - (b) Let $\lambda \in \mathbb{C}$ be such that $|\lambda| > ||P||$. Show that $(\lambda I P)$ is invertible and compute $(\lambda I P)^{-1}$. (2) *Hint: Neumann series!*
 - (c) For which $\lambda \in \mathbb{C}$ is $\lambda I P$ invertible?
- 8. Let $\mathbb{K} = \mathbb{R}$ and let K be a compact metric space. Consider a sequence of functions $(f_n)_{n \in \mathbb{N}} \subseteq C(K)$ (5*) which is decreasing in the sense that $f_{n+1}(x) \leq f_n(x)$ for all $x \in K$ and all $n \in \mathbb{N}$. Let $f \in C(K)$ and assume that, for every $x \in K$, $f_n(x) \to f(x)$ as $n \to \infty$. Prove that $f_n \to f$ with respect to the $\|\cdot\|_{\infty}$ -norm.

Remark: This assertion is called Dini's Theorem.

9. Let K = R and let P ⊆ C([-1,1]) be the space of all polynomial functions on [-1,1] with real (4) coefficients. Let m ∈ C([-1,1]) be given by m(x) = |x| for all x ∈ [-1,1]. Prove, without using the Weierstraß approximation theorem, that m is contained in the closure of P (with respect to the || · ||∞-norm).

Hint: Let $\varepsilon \in (0,1)$ and let $f_{\varepsilon} \in C([-1,1])$ be given by $f_{\varepsilon}(x) = \sqrt{\varepsilon + x^2}$. First show that f_{ε} is contained in the closure of \mathcal{P} .

Definition. Let K be a compact metric space.

- (a) A mapping $T : C(K) \to C(K)$ is called an algebra homomorphism if T is linear and if $T(f \cdot g) = (Tf) \cdot (Tg)$ for all $f, g \in C(K)$.
- (b) A mapping $T: C(K) \to C(K)$ is called a *unital algebra homomorphism* if T is an algebra homomorphism and if $T \mathbb{1}_K = \mathbb{1}_K$.
- **10.** Let K be a compact metric space, let $\mathbb{K} = \mathbb{R}$.
 - (a) We write $f \ge 0$ for a function $f \in C(K)$ if $f(x) \ge 0$ for all $x \in K$. (1) Let $T : C(K) \to C(K)$ be an algebra homomorphism. Prove that $Tf \ge 0$ whenever $f \ge 0$.
 - (b) Prove that every algebra homomorphism $T: C(K) \to C(K)$ is continuous.
 - (c) Let $S,T: C(K) \to C(K)$ be unital algebra homomorphisms, let $h \in C(K)$ be an injective (2) function and assume that Sh = Th. Prove that S = T.

(d) Let $T : C(K) \to C(K)$ be a unital algebra homomorphism, let $h \in C(K)$ be an injective (4) function and assume that the sequence $(T^n h)_{n \in \mathbb{N}}$ converges (with respect to the $\|\cdot\|_{\infty}$ -norm). Show that the sequence $(T^n f)_{n \in \mathbb{N}}$ converges for every $f \in C(K)$.