

UNIVERSITÄT ULM Deadline: Thursday, 16 November 2017 Prof. Dr. Wolfgang Arendt Dr. Jochen Glück Winter term 2017/18Points: $24 + 11^*$

Exercise Course in Functional Analysis: Problem Sheet 4

- **16.** For all $f, g \in C([-1, 1])$ we define $(f|g) = \int_{-1}^{1} f(x)\overline{g(x)} dx$ (compare Example (6.8)(d) from the (4) lecture). Prove that the pre-Hilbert space $(C([-1, 1]), (\cdot|\cdot))$ is not a Hilbert space.
- **17.** Let *E* be a vector space over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. A sesqui-linear form on *E* is a mapping $a : E \times E \to \mathbb{K}$ which fulfils the following properties for all $x, y, z \in E$ and all $\lambda, \mu \in \mathbb{K}$:

$$\begin{aligned} a(\lambda x + \mu y, z) &= \lambda a(x, z) + \mu a(y, z), \\ a(z, \lambda x + \mu y) &= \overline{\lambda} a(z, x) + \overline{\mu} a(z, y). \end{aligned}$$

If the scalar field \mathbb{K} is real, a sesqui-linear form may also be called a *bilinear form*.

Let a and b be sesqui-linear forms on E.

- (a) Let $\mathbb{K} = \mathbb{C}$. Prove that $4a(x, y) = \sum_{k=0}^{3} i^k a(x + i^k y, x + i^k y)$ for all $x, y \in E$. (2) *Remark:* This equality is usually called the *polarization identity*.
- (b) Let $\mathbb{K} = \mathbb{C}$. Prove that a = b and only if a(x, x) = b(x, x) for all $x \in E$. (1)
- (c) Let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Prove that 2a(x, y) + 2a(y, x) = a(x + y, x + y) a(x y, x y) for all (1) $x, y \in E$.
- (d) Let $\mathbb{K} = \mathbb{R}$ and assume in addition that a and b are symmetric, meaning that a(x, y) = a(y, x) (1) and b(x, y) = b(y, x) for all $x, y \in E$. Prove that a = b if and only if a(x, x) = b(x, x) for all $x, y \in E$.
- **18.** Let $(E, (\cdot | \cdot))$ be a pre-Hilbert space.
 - (a) Let $x, y \in E$. Show that x = y if and only if (x|z) = (y|z) for all $z \in E$. (2)
 - (b) Let $T, S \in \mathcal{L}(E)$. Prove that T = S if and only if (Tx|y) = (Sx|y) for all $x, y \in E$. (1)
 - (c) Let $T, S \in \mathcal{L}(E)$ and assume that $\mathbb{K} = \mathbb{C}$. Prove that T = S if and only if (Tx, x) = (Sx, x) (1) for all $x \in E$.

Hint: Use the polarization identity.

(d) Give a concrete counterexample to show that the assertion of (c) is false in the case $\mathbb{K} = \mathbb{R}$. (3)

19. For each sequence $x = (x_n)_{n \in \mathbb{N}} \subseteq \mathbb{K}$ we set $||x||_2 := \sqrt{\sum_{n=1}^{\infty} |x_n|^2} \in [0, \infty]$. Moreover, we define $\ell^2 := \{x = (x_n)_{n \in \mathbb{N}} : ||x||_2 < \infty\}.$

- (a) Prove that $\sum_{n=1}^{\infty} |x_n y_n| \le ||x||_2 ||y||_2$ for all sequences $x = (x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ in \mathbb{K} ; here, (3) we set $0 \cdot \infty := \infty \cdot 0 := 0$.
- (b) Show that the mapping $(\cdot | \cdot) : \ell^2 \times \ell^2 \to \mathbb{K}$ which is given by $(x|y) = \sum_{n=1}^{\infty} x_n \overline{y_n}$ for all (1) $x, y \in \ell^2$, is well-defined and a scalar product.
- (c) Note that the norm induced by the scalar product $(\cdot | \cdot)$ coincides with the mapping $\|\cdot\|_2$: (2) $\ell^2 \to [0, \infty)$.

Show that $(\ell^2, (\cdot | \cdot))$ is a Hilbert space.

- (d) Write down an orthonormal basis for ℓ^2 (and prove that it really is an orthonormal basis). (1)
- (e) Let $C \subseteq \ell^2$. Give a characterisation for relative compactness of C. (3*)

20. (a) Let $(E, (\cdot | \cdot))$ be a pre-Hilbert space. Prove the so-called *parallelogram identity*

$$||x + y||^{2} + ||x - y||^{2} = 2||x||^{2} + 2||y||^{2}$$

(1)

 (0^*)

for all $x, y \in E$.

- (b) Let (E, || · ||) be a normed vector space and assume that the norm fulfils the parallelogram (8**) identity. Show that there exists a scalar product (· | ·) on E which induces the norm || · ||. Remark: This is the so-called Jordan-von-Neumann theorem.
- (c) Guess what the double star in problem (b) means.