16. For all \(f, g \in C([-1, 1]) \) we define \((f|g) = \int_{-1}^{1} f(x)g(x) \, dx \) (compare Example (6.8)(d) from the lecture). Prove that the pre-Hilbert space \((C([-1, 1]), \langle \cdot | \cdot \rangle) \) is not a Hilbert space.

17. Let \(E \) be a vector space over \(K \in \{\mathbb{R}, \mathbb{C}\} \). A \textit{sesqui-linear form} on \(E \) is a mapping \(a : E \times E \to K \) which fulfils the following properties for all \(x, y, z \in E \) and all \(\lambda, \mu \in K \):
\[
\begin{align*}
 a(\lambda x + \mu y, z) &= \lambda a(x, z) + \mu a(y, z), \\
 a(z, \lambda x + \mu y) &= \overline{\lambda} a(z, x) + \mu a(z, y).
\end{align*}
\]

If the scalar field \(K \) is real, a sesqui-linear form may also be called a \textit{bilinear form}.

Let \(a \) and \(b \) be sesqui-linear forms on \(E \).

(a) Let \(K = \mathbb{C} \). Prove that \(4a(x, y) = \sum_{k=0}^{3} i^k a(x + i^k y, x + i^k y) \) for all \(x, y \in E \).

Remark: This equality is usually called the \textit{polarization identity}.

(b) Let \(K = \mathbb{C} \). Prove that \(a = b \) if and only if \(a(x, x) = b(x, x) \) for all \(x \in E \).

(c) Let \(K \in \{\mathbb{R}, \mathbb{C}\} \). Prove that \(2a(x, y) + 2a(y, x) = a(x + y, x + y) - a(x - y, x - y) \) for all \(x, y \in E \).

(d) Let \(K = \mathbb{R} \) and assume in addition that \(a \) and \(b \) are \textit{symmetric}, meaning that \(a(x, y) = a(y, x) \) and \(b(x, y) = b(y, x) \) for all \(x, y \in E \). Prove that \(a = b \) if and only if \(a(x, x) = b(x, x) \) for all \(x, y \in E \).

18. Let \((E, \langle \cdot | \cdot \rangle) \) be a pre-Hilbert space.

(a) Let \(x, y \in E \). Show that \(x = y \) if and only if \(\langle x|z \rangle = \langle y|z \rangle \) for all \(z \in E \).

(b) Let \(T, S \in \mathcal{L}(E) \). Prove that \(T = S \) if and only if \(\langleTx|y\rangle = \langle Sx|y \rangle \) for all \(x, y \in E \).

(c) Let \(T, S \in \mathcal{L}(E) \) and assume that \(K = \mathbb{C} \). Prove that \(T = S \) if and only if \(\langleTx|x\rangle = \langle Sx|x \rangle \) for all \(x \in E \).

Hint: Use the polarization identity.

(d) Give a concrete counterexample to show that the assertion of (c) is false in the case \(K = \mathbb{R} \).

19. For each sequence \(x = (x_n)_{n \in \mathbb{N}} \subseteq K \) we set \(\|x\| := \sqrt{\sum_{n=1}^{\infty} |x_n|^2} \in [0, \infty] \). Moreover, we define \(\ell^2 := \{x = (x_n)_{n \in \mathbb{N}} : \|x\|_2 < \infty\} \).

(a) Prove that \(\sum_{n=1}^{\infty} |x_n y_n| \leq \|x\|_2 \|y\|_2 \) for all sequences \(x = (x_n)_{n \in \mathbb{N}} \) and \(y = (y_n)_{n \in \mathbb{N}} \) in \(K \); here, we set \(0 \cdot \infty := \infty \cdot 0 := 0 \).

(b) Show that the mapping \(\langle \cdot | \cdot \rangle : \ell^2 \times \ell^2 \to K \) which is given by \(\langle x|y \rangle = \sum_{n=1}^{\infty} x_n \overline{y_n} \) for all \(x, y \in \ell^2 \), is well-defined and a scalar product.

(c) Note that the norm induced by the scalar product \(\langle \cdot | \cdot \rangle \) coincides with the mapping \(\| \cdot \|_2 : \ell^2 \to [0, \infty) \).

Show that \((\ell^2, \langle \cdot | \cdot \rangle) \) is a Hilbert space.

(d) Write down an orthonormal basis for \(\ell^2 \) (and prove that it really is an orthonormal basis).

(e) Let \(C \subseteq \ell^2 \). Give a characterisation for relative compactness of \(C \).
20. (a) Let $(E, (\cdot | \cdot))$ be a pre-Hilbert space. Prove the so-called parallelogram identity
\begin{equation}
\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2
\end{equation}
for all $x, y \in E$.

(b) Let $(E, \|\cdot\|)$ be a normed vector space and assume that the norm fulfills the parallelogram identity. Show that there exists a scalar product $(\cdot | \cdot)$ on E which induces the norm $\|\cdot\|$.

Remark: This is the so-called Jordan-von-Neumann theorem.

(c) Guess what the double star in problem (b) means.