

 (6^*)

(2)(2)

(1)

Exercise Course in Functional Analysis: Problem Sheet 5

- **21.** Let $I = [-\pi, \pi] \subseteq \mathbb{R}$ be endowed with the Lebesgue measure and let $L^2(I)$ be endowed with the standard scalar product $(\cdot|\cdot)$.
 - (a) Prove that C(I) is dense in the Hilbert space $L^2(I)$.
 - (b) Let $B \subseteq C(I)$ be dense with respect to the $\|\cdot\|_{\infty}$ -norm. Prove that B is also dense in the (1) Hilbert space $L^2(I)$.
 - (c) Let $\mathbb{K} = \mathbb{C}$. For each $k \in \mathbb{Z}$ we define $e_k \in C(I)$ by $e_k(x) = \frac{1}{\sqrt{2\pi}} e^{ikx}$ for all $x \in I$. Show that (3) $(e_k)_{k \in \mathbb{Z}}$ is an orthonormal basis of $L^2(I)$.
 - (d) Let $f \in L^2(I)$ be given by f(x) = x for $x \in I$. Compute $(f|e_k)$ for all $k \in \mathbb{Z}$.

(e) Compute
$$\sum_{k=1}^{\infty} \frac{1}{k^2}$$
.

22. Let $(H, (\cdot|\cdot))$ be a Hilbert space and let $A \in \mathcal{L}(H)$ be a linear operator which fulfils (Ax|y) = (x|Ay) for all $x, y \in H$.

(a) Prove that $(Ax|x) \in \mathbb{R}$ for all $x \in H$.

For the rest of this problem we assume that there exists a number $\varepsilon > 0$ such that $(Ax|x) \ge \varepsilon ||x||^2$ for all $x \in H$.

- (b) Define $(x|y)_A := (x|Ay)$ for all $x, y \in H$. Prove that $(\cdot|\cdot)_A$ is a scalar product on H and that (3) $(H, (\cdot|\cdot)_A)$ is also a Hilbert space.
- (c) Fix $z \in H$ and define a mapping $\varphi_z : H \to \mathbb{K}$ by $\varphi_z(x) = (x|z)$ for all $x \in H$. Prove that φ_z (1) is a continuous linear functional on the Hilbert space $(H, (\cdot|\cdot)_A)$.
- (d) Prove that A is bijective. (3)
 Hint: The theorem of Riesz–Fréchet is of great help in order to prove surjectivity of A.
- **23.** Give an elementary proof (i.e. a proof that does not use the theorem of Baire) of the uniform (3) boundedness principle on the Banach space \mathbb{K}^n .
- **24.** (a) Let *E* be a Banach space and let $(T_n)_{n \in \mathbb{N}} \subseteq \mathcal{L}(E)$. Show that, if T_n converges to an operator (1) $T \in \mathcal{L}(E)$ with respect to the operator norm as $n \to \infty$, then T_n converges also strongly to *T*.
 - (b) Find an example of a sequence $(T_n)_{n \in \mathbb{N}} \subseteq \mathcal{L}(\ell^2)$ with the following two properties: (3)
 - (i) T_n converges strongly to 0 as $n \to \infty$.
 - (ii) $||T^n|| = 1$ for all $n \in \mathbb{N}$.
 - (c) Let *E* be a Banach space, let $(T_n)_{n \in \mathbb{N}} \subseteq \mathcal{L}(E)$ and let $(c_n)_{n \in \mathbb{N}} \subseteq (0, \infty)$ be a null sequence (3) with the following property: For every $x \in E$ there exists a number $d_x \ge 0$ such that $||T_n x|| \le d_x c_n$ for all $n \in \mathbb{N}$.

Obviously, this implies that T_n converges strongly to 0 as $n \to \infty$. Prove that T_n even converges to 0 with respect to the operator norm as $n \to \infty$.

- **25.** Let *E* be a Banach space, let $F \subseteq E$ be a closed vector subspace and let $(T_n)_{n \in \mathbb{N}} \subseteq \mathcal{L}(E)$. We say (4*) that *F* is ...
 - (i) ... individually eventually invariant under $(T_n)_{n \in \mathbb{N}}$ if, for each $x \in F$, there exists an integer $n_0 \in \mathbb{N}$ such that $T_n x \in F$ for all $n \ge n_0$.
 - (ii) ... uniformly eventually invariant under $(T_n)_{n \in \mathbb{N}}$ if there exists an integer $n_0 \in \mathbb{N}$ such that $T_n F \subseteq F$ for all $n \ge n_0$.

Prove that F is uniformly eventually invariant under $(T_n)_{n \in \mathbb{N}}$ if and only if F is individually eventually invariant under F.