

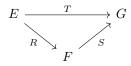
UNIVERSITÄT ULM Deadline: Thursday, 30 November 2017 Prof. Dr. Wolfgang Arendt Dr. Jochen Glück Winter term 2017/18 Points: $20 + 17^*$

Exercise Course in Functional Analysis: Problem Sheet 6

26. Let $(y_n)_{n \in \mathbb{N}} \subseteq \mathbb{K}$ be a sequence such that $\lim_{N \to \infty} \sum_{k=1}^{N} x_n \overline{y_n}$ exists for every sequence $(x_n)_{n \in \mathbb{N}} \in \ell^2$. (5) Prove that $(y_n)_{n \in \mathbb{N}} \in \ell^2$.

Hint: Use the theorem of Banach-Steinhaus and the representation theorem of Riesz-Fréchet.

27. Let E, F be Banach spaces and let G be a normed space. Consider linear mappings $T : E \to G$, (4) $R : E \to F$ and $S : F \to G$ such that the following diagram commutes:



Show that, if T and S are continuous and S is injective, then R is continuous.

Let V be a vector space over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on V are called *equivalent* if there exist constants c, d > 0 such that $c\|x\|_1 \leq \|x\|_2 \leq d\|x\|_1$ for all $x \in V$. It is important to note that $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if and only if the identity mapping id : $V \to V$ is an isomorphism between the normed spaces $(V, \|\cdot\|_1)$ and $(V, \|\cdot\|_2)$.

- **28.** Let V be a vector space over K and let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two complete norms on V. Assume that there exists a constant d > 0 such that $\|x\|_2 \le d\|x\|_1$ for all $x \in V$.
 - (a) Fill in the details for Corollary (13.4) in the lecture, i.e. prove that the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ (2) are actually equivalent.
 - (b) Show that the conclusion of (a) fails in general if $\|\cdot\|_1$ is not assumed to be complete. (2)
 - (c) Show that the conclusion of (a) fails in general if $\|\cdot\|_2$ is not assumed to be complete. (2)

29. Let V be a vector space over \mathbb{K} .

- (a) Let || · ||₁ and || · ||₂ be two complete norms on V with the following property: (3)
 (*) Whenever a sequence (x_n) ⊆ V converges to a vector a ∈ V with respect to || · ||₁ and to a vector b ∈ V with respect to || · ||₂, then a = b. Prove that the norms || · ||₁ and || · ||₂ are equivalent.
- (b) Assume now that dim $V = \infty$ and let $\|\cdot\|_1$ be a complete norm on V. Show that there exists (2) a complete norm $\|\cdot\|_2$ on V such that the property (*) above fails.

Several students complained about a lack of difficult problems on the latest exercise sheets. Fortunately, such an issue is easily resolved...

- **30.** Let $(E, \|\cdot\|)$ be a Banach space over \mathbb{R} and let $K \subseteq E$ be a *closed cone*, i.e. a closed non-empty subset of E with the following properties:
 - (i) We have $\alpha x + \beta y \in K$ for all $x, y \in K$ and all scalars $\alpha, \beta \in [0, \infty)$.
 - (ii) We have $K \cap (-K) = \{0\}$, where $-K := \{-x : x \in K\}$.

Set $F := K - K := \{x - y : x, y \in K\}$; it is easy to see that F is a vector subspace of E.

- (a) For each $z \in F$ we define $||z||_F := \inf\{||x|| + ||y|| : x, y \in K \text{ and } z = x y\}$. Prove that $|| \cdot ||_F$ (4*) is a complete norm on F.
- (b) Assume that the cone K is generating in E, i.e. that K K = E. Prove that there exists a (2*) number $c \ge 0$ with the following property: for every $z \in E$ there exist vectors $x, y \in K$ such that z = x y and $||x|| + ||y|| \le c||z||$.

For the rest of this problem we assume that the cone K is generating in E and that $\varphi : E \to \mathbb{R}$ is a linear mapping which is *positive*, meaning that $\varphi(x) \ge 0$ for all $x \in K$.

(c) Prove that there exists a number $d \ge 0$ such that $\varphi(x) \le d \|x\|$ for all $x \in K$. (3*)

 (1^*)

(d) Prove that φ is continuous.

In case that anybody is in need of a further challenge...

- **31.** Let the scalar field be real and let $C_0(\mathbb{R})$ be the space of all scalar-valued continuous functions f on \mathbb{R} which vanish at infinity (i.e. $\lim_{|x|\to\infty} f(x) = 0$). We endow this space with the $\|\cdot\|_{\infty}$ -norm, which renders it a Banach space.
 - (a) A linear mapping T: C₀(ℝ) → C₀(ℝ) is called *positive* if Tf ≥ 0 for all f ≥ 0 (by f ≥ 0 we (4*) mean that f(x) ≥ 0 for all x ∈ ℝ).
 Prove that every positive linear mapping T: C₀(ℝ) → C₀(ℝ) is continuous.
 - (b) Let $\Phi : C_0(\mathbb{R}) \to C_0(\mathbb{R})$ be an algebra homomorphism, i.e. a linear mapping which fulfils (3*) T(fg) = (Tf)(Tg) for all $f, g \in C_0(\mathbb{R})$. Prove that T is continuous and that $||T|| \leq 1$.