

UNIVERSITÄT ULM Deadline: Thursday, 07 December 2017 Prof. Dr. Wolfgang Arendt Dr. Jochen Glück Winter term 2017/18Points: $20 + 16^*$

Exercise Course in Functional Analysis: Problem Sheet 7

- **32.** (a) Consider the Banach space C([-1, 1]) (which we endow, as usual, with the $\|\cdot\|_{\infty}$ -norm) and (4) its closed vector subspace $F := \{f \in C([-1, 1]) : f|_{[-1,0]} = 0\}$. Prove that the quotient space C([-1, 1])/F is isometrically isomorphic to the Banach space C([-1, 0]).
 - (b) Consider the Banach space $c := \{(x_n)_{n \in \mathbb{N}} : \lim_{n \to \infty} x_n \text{ exists}\}$ (endowed with the ∞ -norm) (2) and its closed vector subspace c_0 . Find a concrete Banach space G which is isometrically isomorphic to the quotient space c/c_0 .
- **33.** Let *E* be a Banach space and let $F, G \subseteq E$ be closed vector subspaces such that $E = F \oplus G$. Prove (3) that the quotient space E/F is isomorphic to the Banach space *G*.
- 34. Let M be a subset of a Banach space E. We say that M is weakly bounded if the set {⟨x', x⟩ : x ∈ M} (4) is bounded for every x' ∈ E'.
 Prove that M is weakly bounded if and only if M is bounded.
- **35.** Let $\mathbb{K} = \mathbb{R}$, let K be a compact metric space and let E = C(K). A linear functional $\psi \in E'$ is called *positive* if $\langle \psi, f \rangle \ge 0$ for all $f \ge 0$.
 - (a) Define $p: E \to \mathbb{R}$ by $p(f) := ||f^+||_{\infty}$ for all $f \in E$ (where $f^+(x) := f(x) \lor 0$ for all $x \in K$). (2) Show that p is sublinear.
 - (b) Let $0 \le f \in E$, let F denote the span of f and let $\varphi : F \to \mathbb{R}$ be given by $\varphi(\lambda f) = \lambda ||f||$ for (2) all $\lambda \in \mathbb{R}$. Prove that $\varphi(g) \le p(g)$ for all $g \in F$.
 - (c) Let $0 \le f \in E$. Show that there exists a functional $\varphi \in E'$ which is positive and which fulfils (3) $\|\varphi\| = 1$ and $\langle \varphi, f \rangle = \|f\|_{\infty}$.
- **36.** Let *E* be a real Banach space and let $E \subseteq E_+$ be a closed cone (cf. Problem 30 on Sheet 6).
 - (a) Define $p: E \to \mathbb{R}$ by $p(x) = \text{dist}(x, -E_+)$ for each $x \in E$. Show that p is sublinear. (2*)
 - (b) Let $x \in E \setminus E_+$ and denote the span of x by F. We define $\varphi : F \to \mathbb{R}$ by $\varphi(\lambda x) = -\lambda \operatorname{dist}(x, E_+)$ (2*) for all $\lambda \in \mathbb{R}$. Prove that $\varphi(y) \leq p(y)$ for all $y \in F$.
 - (c) Let $x \in E \setminus E_+$. Show that there exists a positive functional $x' \in E'$ such that $\langle x', x \rangle < 0$. (2*)
 - (d) Show that a vector $x \in E$ fulfils $x \in E_+$ if and only if $\langle x', x \rangle \ge 0$ for all positive functionals (1*) $x' \in E'$.
 - (e) Let $x \in E$. Prove that there exists a positive functional $x' \in E'$ such that $\langle x', x \rangle \neq 0$. (2*)
 - (f) Let F also be a real Banach space and let $F_+ \subseteq F$ be a closed cone. A linear mapping (2*) $T: E \to F$ is called *positive* if $TE_+ \subseteq F_+$. Assume that the cone E_+ is generating in E. Prove that every positive linear mapping $T: E \to F$ is continuous.
- **37.** Let $\mathbb{K} = \mathbb{C}$. We endow the vector space $C^1([0,1]) := \{f : [0,1] \to \mathbb{R} : f \text{ is continuously differentiable}\}$ with the norm $\|\cdot\|_{C^1}$ given by $\|f\|_{C^1} := \|f\|_{\infty} + \|f'\|_{\infty}$ for all $f \in C^1([0,1])$. It is not difficult to see that $(C^1([0,1]), \|\cdot\|_{C^1})$ is a Banach space. Moreover, $C^1([0,1])$ is an algebra with respect to pointwise multiplication, i.e. we have $fg \in C^1([0,1])$ for all $f, g \in C^1([0,1])$.
 - (a) Prove that every algebra homomorphism $\Phi : C^1([0,1]) \to C^1([0,1])$ is continuous. (3*)
 - (b) Give an example of an algebra homomorphism $\Phi : C^{1}([0,1]) \to C^{1}([0,1])$ which fulfils $\|\Phi\| > 1$. (2*)