

(1)

Exercise Course in Functional Analysis: Problem Sheet 8

- **38.** Consider the sequence $(f^{(n)})_{n \in \mathbb{N}} \subseteq c_0$ which is given by $f^{(n)} = (1, \ldots, 1, 0, 0, \ldots)$ for each $n \in \mathbb{N}$; here, the first *n* entries of the vector $f^{(n)}$ equal 1 and all further entries equal 0.
 - (a) Prove that $(f^{(n)})_{n \in \mathbb{N}}$ is not weakly convergent in c_0 .
 - (b) Let us consider the vectors $f^{(n)}$ as elements of ℓ^{∞} now. Prove that the sequence $(f^{(n)})_{n \in \mathbb{N}}$ is (2) weak*-convergent in ℓ^{∞} .
- **39.** (a) Let $f \in c_0$ and let $(f^{(n)})_{n \in \mathbb{N}} \subseteq c_0$ be a bounded sequence such that $f_k^{(n)} \to f_k$ as $n \to \infty$ for (2) each $k \in \mathbb{N}$. Prove that the sequence $(f^{(n)})_{n \in \mathbb{N}}$ converges weakly to f.
 - (b) Let K = R and let f, h ∈ c₀. We write f ≤ h iff f_k ≤ h_k for all k ∈ N. Moreover, we call the (3) set [f, h] := {g ∈ c₀ : f ≤ g ≤ h} the order interval between f and h (which is non-empty iff f ≤ h).
 Let f ≤ h. Prove that every sequence (g⁽ⁿ⁾)_{n∈N} ⊆ [f, h] has a weakly convergent subsequence. Remark: This shows that order intervals in c₀ are weakly sequentially compact.
- **40.** Let *H* be a pre-Hilbert space and let $(x_n)_{n \in \mathbb{N}} \subseteq H$ and $x \in H$. Show that the following assertions (3) are equivalent:
 - (i) $(x_n)_{n \in \mathbb{N}}$ converges to x with respect to the norm on H.
 - (ii) $(x_n)_{n \in \mathbb{N}}$ converges weakly to x and $\limsup_{n \to \infty} ||x_n|| \le ||x||$.
- **41.** Let K be a compact metric space.
 - (a) Assume that K is infinite. Show that there exists a convergent sequence $(x_n)_{n \in \mathbb{N}}$ such that (2) all elements x_n are pairwise distinct.
 - (b) Assume that K is infinite. Construct a bounded sequence $(f_n)_{n \in \mathbb{N}}$ which does not have a (4) weakly convergent subsequence. Conclude that C(K) is not reflexive.
 - (c) Prove that C(K) is separable. (5) *Remark:* In contrast to most results about C(K)-spaces which occur in this course, the separability of C(K) relies heavily on the fact that K is a metric space and not merely a compact topological space!

- **42.** Let *E* be a separable Banach space. Show that there exists a compact metric space *K* and a closed (4^*) vector subspace *F* of C(K) such that *E* and *F* are isometrically isomorphic.
- **43.** Let *E* be a real Banach space and let E_+ be a closed cone in *E*. The pair (E, E_+) is usually called an *ordered Banach space*. For two vectors $f, h \in E$ we write $f \leq h$ iff $h - f \in E_+$. Moreover, we define the *order interval* $[f, h] := \{g \in E : f \leq g \leq h\}$ for all $f, h \in E$.

Assume throughout this exercise that the cone E_+ is generating.

- (a) Let $f \in E$ and let $(g_n)_{n \in \mathbb{N}} \subseteq E_+$ be a sequence which converges to 0. Prove that $f \leq 0$ if (1^*) $f \leq g_n$ for all $n \in \mathbb{N}$ and prove that f = 0 if $0 \leq f \leq g_n$ for all $n \in \mathbb{N}$.
- (b) The cone E_+ is called *normal* if there exists a constant $C \ge 0$ such that $||f|| \le C||g||$ for all (5*) vectors $f, g \in E$ which fulfil $0 \le f \le g$. Prove that the following assertions are equivalent:
 - (i) The cone E_+ is normal.
 - (ii) For each $g \in E_+$ the order interval [0, g] is bounded.
 - (iii) Every order interval in E is bounded.
 - (iv) If two sequences $(f_n)_{n \in \mathbb{N}}, (g_n)_{n \in \mathbb{N}} \subseteq E_+$ fulfil $f_n \leq g_n$ for all $n \in \mathbb{N}$ and if $(g_n)_{n \in \mathbb{N}}$ converges to 0, then $(f_n)_{n \in \mathbb{N}}$ converges to 0, too (compare (a)!).
- (c) We define $E'_+ := \{x' \in E' : x' \text{ is positive}\}$. Prove that E'_+ is a closed cone in E'. (2*) We call E'_+ the dual cone of E_+ .
- (d) Assume that the dual cone E'_{+} is generating in E'. Prove that the cone E_{+} is normal. (2*)