

UNIVERSITÄT ULM Deadline: Thursday, 21 December 2017 Prof. Dr. Wolfgang Arendt Dr. Jochen Glück Winter term 2017/18Points: $20 + 13^*$

Exercise Course in Functional Analysis: Problem Sheet 9

44. Let *E* be a normed vector space and let $K, C \subseteq E$ be closed and convex subsets. Assume that *K* is (5) compact and that $K \cap C = \emptyset$. Prove that there exist a number $\gamma \in \mathbb{R}$ and a functional $\varphi \in E'$ such that

$$\operatorname{Re}\langle \varphi, x \rangle < \gamma < \operatorname{Re}\langle \varphi, y \rangle \qquad \forall x \in K \ \forall y \in C.$$

Hint: First prove that there exists a number $\delta > 0$ *such that* $dist(y, K) \ge \delta$ *for all* $y \in C$.

45. Recall that $\ell^p := \{x = (x_n)_{n \in \mathbb{N}} \subseteq \mathbb{K} : \|x\|_p := \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} < \infty\}$ for each $p \in [1, \infty)$. (5) Let $1 \le p_1 \le p_2 \le \infty$. Prove that

$$\ell^1 \subseteq \ell^{p_1} \subseteq \ell^{p_2} \subseteq \ell^\infty$$

and that the inclusion maps between these spaces are continuous.

Remark: Note that the inclusions above are converse to the inclusions for L^p -spaces over finite measure spaces!

- **46.** (a) Let $p \in [1, \infty)$ and let $C \subseteq \ell^p$. Give a characterisation for relative compactness of C. (2)
 - (b) As usual, let c denote the space of all convergent sequences, Let $C \subseteq c$. Give a characterisation (3) for relative compactness of C.
- 47. (a) Prove that every pre-Hilbert space is uniformly convex. (3)
 - (b) Prove that the spaces c_0 and c are not uniformly convex.
- **48.** In this exercise we give a purely geometric proof of the Hahn–Banach separation theorem. Do not use the Hahn–Banach extension theorem or any of the separations theorems in the proofs!

Let $\mathbb{K} = \mathbb{R}$. Let B be a non-empty open convex subset of a normed space E and let $a \in E \setminus B$.

- (a) For all x, y ∈ E denote the line segment between x and y by [x, y] := {x + t(y x) : t ∈ [0, 1]} (2*) (note that this has nothing to do with order intervals in ordered Banach spaces, for which we used the same notation). Moreover, for each S ⊆ E we denote the convex hull of S by conv S. Prove that we have conv(C ∪ {x}) = ⋃_{c∈C}[c, x] for each convex set Ø ≠ C ⊆ E and each x ∈ E.
- (b) Show that there exists a maximal set H (with respect to set inclusion) among all convex (3^{*}) subsets of E that contain a and do not intersect B. Show moreover that H is closed.
- (c) Prove that $E \setminus H$ is convex, too.

 (4^*)

(2)

- (d) Fix an arbitrary vector $h \in \partial H$. Prove that $F := \partial H h$ is closed vector subspace of E (3*) and that E/F has dimension 1. Conclude that there exists a functional $\varphi \in E'$ whose kernel coincides with F.
- (e) Show that there exists a functional $\varphi \in E'$ such that $\langle \varphi, b \rangle < \langle \varphi, a \rangle$ for all $b \in B$. (1*)