

Exercise Course in Functional Analysis: Problem Sheet 10

- **49.** Let *E* be a Banach space and let $T \in \mathcal{L}(E)$.
 - (a) Assume that T is bijective. Prove that the adjoint $T' \in \mathcal{L}(E')$ is also bijective and that we (2) have $(T')^{-1} = (T^{-1})'$.
 - (b) Assume that T' is bijective. Prove that T is also bijective. (4) Hint: First show that T is injective and that the range of T is dense in E. Then use the bi-adjoint of T.
- **50.** Let (X, τ) be a topological space and let $C \subseteq X$. Show that the following assertions are equivalent: (4)
 - (i) X is closed.
 - (ii) Whenever a net $(x_j)_{j \in J}$ in C converges to an element $x \in X$, then $x \in C$.
- **51.** Let (X, τ) be a topological space. Show that the following assertions are equivalent: (4)
 - (i) (X, τ) is a Hausdorff space.
 - (ii) For any two distinct points $x, y \in X$ there exist disjoint open sets $A, B \subseteq X$ such that $x \in A$ and $y \in B$.
- **52.** Let X, Y be non-empty sets and let $S \subseteq X$. Let $(x_i)_{i \in I}$ be a net in X and let $f : X \to Y$ be an arbitrary mapping.
 - (a) Show that if $(x_i)_{i \in I}$ is a universal net in X, then $(f(x_i))_{i \in I}$ is a universal net in Y. (1)
 - (b) Assume that $x_i \in S$ for all $i \in I$. Prove that the net $(x_i)_{i \in I}$ is universal in X if and only if it (2) is universal in S.
 - (c) Let $(z_n)_{n \in \mathbb{N}}$ be a sequence in X which is a universal net. Prove that this sequence is eventually (2) constant.
 - (d) Give an example of two sequences $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ in \mathbb{R} with the following properties: (2)
 - (1) $(a_n)_{n \in \mathbb{N}}$ is a subnet of $(b_n)_{n \in \mathbb{N}}$.
 - (2) $(a_n)_{n \in \mathbb{N}}$ is not a subsequence of $(b_n)_{n \in \mathbb{N}}$.
- 53. This exercise has been removed since it turned out that the exercise did not really make sense.

- 54. Let Y be a non-empty set. A *filter* on Y is a collection of sets $\mathcal{F} \subseteq \mathcal{P}(Y)$ with the following properties:
 - (1) Every set $A \in \mathcal{F}$ is non-empty.
 - (2) If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.
 - (3) If $A \subseteq B \subseteq Y$ and $A \in \mathcal{F}$, then $B \in \mathcal{F}$.

An *ultra filter* on Y is a filter on Y which is maximal (with respect to inclusion) among all filters on Y.

- (a) Prove that every filter on Y is contained in an ultra filter on Y.
- (b) Let *I* be a directed set. Prove that there exists an ultra filter on *I* which contains all sets of (3^*) the type $\{i \in I : i \ge i_0\}$ (where i_0 runs through *I*).

 (2^*)

(c) Let $(x_i)_{i \in I}$ be a net in a non-empty set X. Prove that $(x_i)_{i \in I}$ has a subnet which is a universal (4*) net.