

(3)

Exercise Course in Functional Analysis: Problem Sheet 11

- **55.** Let *E* be a Banach space and let $K \subseteq E$ be convex and weakly compact. Let $\varphi : K \to \mathbb{R}$ be convex and lower semicontinuous. In this exercise we give an alternative proof of the fact that φ has a minimum.
 - (a) Define $S_{\lambda} = \{x \in K : \varphi(x) \leq \lambda\}$ for each $\lambda \in \mathbb{R}$. Show that S_{λ} is norm closed and convex (2) for each $\lambda \in \mathbb{R}$.
 - (b) Show that S_{λ} is weakly compact for each $\lambda \in \mathbb{R}$.
 - (c) Show that $\bigcap_{\lambda \in \varphi(K)} S_{\lambda}$ is non-empty and conclude that φ has a minimum. (4)
- 56. Let *E* and *F* be Banach spaces and let $T \in \mathcal{L}(E)$. Let τ_E and τ_F denote the weak topologies on *E* (4) and *F*, respectively. Proof that $T : (E, \tau_E) \to (F, \tau_F)$ is continuous.
- **57.** Let *E* be a normed vector space and let $K \subseteq E$ be a convex set.
 - (a) Let $x \in K$ be arbitrary and let $y \in K$ be an interior point of K. Show that $(1 \lambda)x + \lambda y$ is (2) an interior point of K for every $\lambda \in (0, 1]$.
 - (b) Assume that K is closed and has non-empty interior. Prove that K coincides with the closure (2) of its interior.

For the rest of this exercise we assume that the scalar field is real.

- (c) Let $x \in K$. A functional $\varphi \in E' \setminus \{0\}$ is said to support K at x if $\langle \varphi, y \rangle \ge \langle \varphi, x \rangle$ for all $y \in K$. (2) Assume that K is closed and has non-empty interior, and let $x \in \partial K$. Show that there exists a functional $\varphi \in E' \setminus \{0\}$ which supports K at x.
- (d) Now, endow [0,1] with the Lebesgue measure and set $E = L^1([0,1])$. Let $K := \{f \in E : f \ge 0 \text{ almost everywhere}\}$.

Show that K is a closed convex set with empty interior. Show moreover that there does not (4) exist a functional $\varphi \in E' \setminus \{0\}$ which supports K at $\mathbb{1}_{[0,1]}$.