Exercise Course in Functional Analysis: Problem Sheet 11

55. Let E be a Banach space and let $K \subseteq E$ be convex and weakly compact. Let $\varphi : K \to \mathbb{R}$ be convex and lower semicontinuous. In this exercise we give an alternative proof of the fact that φ has a minimum.

(a) Define $S_\lambda = \{ x \in K : \varphi(x) \leq \lambda \}$ for each $\lambda \in \mathbb{R}$. Show that S_λ is norm closed and convex for each $\lambda \in \mathbb{R}$.

(b) Show that S_λ is weakly compact for each $\lambda \in \mathbb{R}$.

(c) Show that $\bigcap_{\lambda \in \varphi(K)} S_\lambda$ is non-empty and conclude that φ has a minimum.

56. Let E and F be Banach spaces and let $T \in \mathcal{L}(E)$. Let τ_E and τ_F denote the weak topologies on E and F, respectively. Prove that $T : (E, \tau_E) \to (F, \tau_F)$ is continuous.

57. Let E be a normed vector space and let $K \subseteq E$ be a convex set.

(a) Let $x \in K$ be arbitrary and let $y \in K$ be an interior point of K. Show that $(1 - \lambda)x + \lambda y$ is an interior point of K for every $\lambda \in (0, 1]$.

(b) Assume that K is closed and has non-empty interior. Prove that K coincides with the closure of its interior.

For the rest of this exercise we assume that the scalar field is real.

(c) Let $x \in K$. A functional $\varphi \in E' \setminus \{0\}$ is said to support K at x if $\langle \varphi, y \rangle \geq \langle \varphi, x \rangle$ for all $y \in K$. Assume that K is closed and has non-empty interior, and let $x \in \partial K$. Show that there exists a functional $\varphi \in E' \setminus \{0\}$ which supports K at x.

(d) Now, endow $[0, 1]$ with the Lebesgue measure and set $E = L^1([0, 1])$. Let $K := \{ f \in E : f \geq 0 \text{ almost everywhere} \}$. Show that K is a closed convex set with empty interior. Show moreover that there does not exist a functional $\varphi \in E' \setminus \{0\}$ which supports K at $1_{[0,1]}$.

Übungsblätter sowie aktuelle Informationen unter
www.uni-ulm.de/mawi/iaa/courses/ws17/funkana/