

Prof. Dr. Wolfgang Arendt Dr. Jochen Glück Winter term 2017/18 Points: 20

(3)

Exercise Course in Functional Analysis: Problem Sheet 14

65. Let $\mathbb{K} = \mathbb{C}$. For every $\lambda \in \ell^{\infty}$ we define the operator $D_{\lambda} \in \mathcal{L}(\ell^2)$ by $D_{\lambda}x = \lambda x = (\lambda_n x_n)_{n \in \mathbb{N}}$ for (4) each $x \in \ell^2$.

Let H be an infinite dimensional separable Hilbert space and let $T \in \mathcal{L}(H)$. Prove that the following assertions are equivalent:

- (i) T is normal and compact.
- (ii) There exist a sequence $\lambda \in c_0$ and a unitary operator $U: \ell^2 \to H$ such that $T = UD_{\lambda}U^{-1}$.
- **66.** Let *H* be a pre-Hilbert space and let $x, y \in H$. Show that the following assertions are equivalent: (3)
 - (i) $x \perp y$.
 - (ii) $||x + \alpha y|| \ge ||x||$ for each $\alpha \in \mathbb{K}$.
- **67.** Let $\mathbb{K} = \mathbb{C}$, let *H* be a Hilbert space and let $T \in \mathcal{L}(E)$ be a contractive operator (i.e. an operator (4) which fulfils $||T|| \leq 1$).

Let $\lambda, \mu \in \mathbb{C}$ be two distinct eigenvalues of T of modulus 1 and let $x, y \in H$ be corresponding eigenvectors, respectively. Show that $x \perp y$.

Hint: Apply the rescaled resolvent $(|\nu| - 1)R(\nu, T)$ to the vector $x + \alpha y$, where $\alpha \in \mathbb{C}$ is arbitrary and $\nu \in \rho(T)$ are certain appropriately chosen numbers.

68. Define a mapping $T: L^2([0,1]) \to L^2([0,1])$ by means of the formula

$$(Tf)(x) = \int_{1}^{x} \int_{0}^{y} f(z) \, \mathrm{d}z \, \mathrm{d}y \qquad (x \in [0, 1])$$

for all $f \in L^2([0,1])$.

- (a) Show that T is well-defined and a bounded linear operator on $L^2([0,1])$. (2)
- (b) Show that T is self-adjoint. (4) *Hint: First proof that* $\langle Tf, g \rangle = \langle f, Tg \rangle$ for all $f, g \in C([0, 1])$.
- (c) Show that T is compact.