

UNIVERSITÄT ULM Deadline: Thursday, 15 February 2018

Prof. Dr. Wolfgang Arendt Dr. Jochen Glück Winter term 2017/18 Points: 20*

Exercise Course in Functional Analysis: Problem Sheet 15

69. You are hiking in a two-dimensional compact and convex hiking area K. Right in front of you, there (2^{*}) is a map of the area. By a map we mean a tuple (M, m) where M is a subset of K and $m : K \to M$ is a continuous bijection. Of course you know how to read a map: every point $y \in M$ on the map corresponds to the point $m^{-1}(y)$ in the hiking area (some people might find it difficult to use the map if m is note affine, but you are a mathematician, so you're fine with an m which is merely continuous and bijective).

A "You are here"-point on the map is a point $p \in M$ with the following property: if you step upon the map and stand right upon the point p, then the position in K which is indicated by your position on the map coincides with your real position in K.

Prove that every map contains a "You are here"-point. Prove moreover that this remains true if the hiking area K is not two-dimensional but, more generally, a compact convex subset of a Banach space E.

- **70.** Give an example of a linear mapping $T : \mathbb{R}^2 \to \mathbb{R}^2$ which does not have a non-trivial invariant (2*) subspace. Why doesn't this contradict Lomonosov's theorem?
- **71.** Give a counterexample which show's that Brouwer's fixed point theorem does not in general hold (2*) on compact subsets $K \subseteq \mathbb{R}^n$ which are merely connected, but not convex.
- **72.** Let E be a Banach space.
 - (a) Let $\emptyset \neq K \subseteq E'$ be convex and compact with respect to the weak*-topology. Let $T \in \mathcal{L}(E)$ (4*) and fix $z' \in E'$. We define a mapping $\varphi : E' \to E'$ by $\varphi(x') = T'x' + z'$ for all $x' \in E'$. Show that φ has a fixed point in K in case that $\varphi(K) \subseteq K$. *Hint:* Choose an arbitrary point $x' \in K$ and consider a weak*-convergent subnet of the sequence $(\frac{1}{n} \sum_{k=0}^{n-1} \varphi^k(x'))_{n \in \mathbb{N}}$.

(b) Let $T \in \mathcal{L}(E)$ be power pounded, meaning that $M := \sup_{n \in \mathbb{N}} ||T^n|| < \infty$. (5*) Assume that 1 is an eigenvalue of T. Prove that 1 is also an eigenvalue of the dual operator T'.

Hint: The set $\hat{K} := \{x' \in E' : ||(T')^n x'|| \le 1 \text{ for all } n \in \mathbb{N}_0\}$ is quite useful.

(c) The following generalisation of (a) is a version of the Kaktuani-Markov fixed point theorem. (5*) Let I be an arbitrary non-empty set and assume that, for each i ∈ I, a mapping φ_i : E' → E' is given by φ_i(x') = T'_ix' + z'_i for all x' ∈ E', where T_i ∈ L(E) and z'_i ∈ E'. Let Ø ≠ K ⊆ E' be convex and compact with respect to the weak*-topology. Assume that φ_i(K) ⊆ K for each i ∈ K and that all the mappings φ_i commute on K (i.e. that φ_i(φ_j(x')) = φ_j(φ_i(x')) for all i, j ∈ I and all x' ∈ K.

Prove that the mappings φ_i $(i \in I)$ have a common fixed point in K, i.e. that there exists a vector $x'_0 \in K$ such that $\varphi_i(x'_0) = x'_0$ for all $i \in I$. *Hint:* Zorn's lemma.