

Universität Ulm

Abgabe: Mittwoch, 03.05.2017

Prof. Dr. Wolfgang Arendt Henrik Kreidler Sommersemester 2017

Punktzahl: 16 + 4*

Übungen Evolutionsgleichungen: Blatt 2

Die Abgabe zu zweit ist möglich. Falls Ihr Fragen habt oder einen Hinweis braucht, schreibt eine Mail an henrik.kreidler@uni-ulm.de.

Mit * gekennzeichnete Aufgaben sind Bonusaufgaben.

- **1.** Sei X ein Banachraum und A ein Operator auf X mit Definitionsbereich D(A). Versehen mit der $Graphennorm \parallel \cdot \parallel$ definiert durch $\|x\|_A := \|x\| + \|Ax\|$ für $x \in D(A)$ wird D(A) zu einem normierten Raum.
 - (i) Zeige: A ist genau dann abgeschlossen, wenn $(D(A), \|\cdot\|_A)$ ein Banachraum ist. (2)
 - (ii) Der Operator A heißt abschließbar, wenn es einen abgeschlossenen Operator B auf X, so, dass A eine Einschränkung von B ist (in Zeichen: $A \subseteq B$), d.h. $D(A) \subseteq D(B)$ und Ax = Bx für alle $x \in D(A)$. Zeige: Falls A abschließbar ist, gibt es einen kleinsten abgeschlossenen Operator \overline{A} (genannt $Abschluss\ von\ A$) mit $A \subseteq \overline{A}$.
- 2. Bestimme den Generator der *Diagonalhalbgruppe* M_q auf $C_0(\mathbb{R})$ von Blatt 1, Aufgabe 4. (4)
- 3. Gegeben sei eine C_0 -Halbgruppe T auf einem Banachraum X mit Generator (A, D(A)). Zeige, dass die folgenden Halbgruppen S stark stetig sind und bestimme jeweils den Generator (mit Definitionsbereich).
 - (i) $S(t) := e^{\alpha t} T(\beta t)$ für alle $t \ge 0$, wobei $\alpha \in \mathbb{C}$ und $\beta > 0$ feste Parameter sind. (1)
 - (ii) $S(t) := V^{-1}T(t)V$ für alle $t \ge 0$, wobei $V : Y \longrightarrow X$ ein Isomorphismus von einem Banachraum (1) Y nach X ist.
 - (iii) $S(t) := T(t)|_Z$ für alle $t \ge 0$, wobei $Z \subseteq X$ ein abgeschlossener Unterraum von X mit $T(t)Z \subseteq Z$ für alle $t \ge 0$ ist. (1)
- **4.** Für zwei Funktionen $f, g \in L^2(\mathbb{R})$ definieren wir die Faltung f * g durch

$$f * g(x) := \int_{\mathbb{R}} f(x - y)g(y) \, dy$$
 für $x \in \mathbb{R}$.

Weiter sei $\mathscr{F} \in \mathscr{L}(L^2(\mathbb{R}))$ die Fouriertransformation.

(i)* Zeige, dass für zwei Schwartzfunktionen $f, g \in \mathscr{S}(\mathbb{R})$ die Faltung f * g wieder in $\mathscr{S}(\mathbb{R})$ liegt (2*)

$$\mathscr{F}(f * g) = \sqrt{2\pi} \cdot \mathscr{F}f \cdot \mathscr{F}g$$

erfüllt.

(ii)* Zeige, dass die Funktion $\gamma \in \mathscr{S}(\mathbb{R})$ gegeben durch $\gamma(x) = e^{-\frac{x^2}{2}}$ für $x \in \mathbb{R}$ ein Fixpunkt von \mathscr{F} ist, d.h. $\mathscr{F}\gamma = \gamma$. Hierbei darf verwendet werden, dass γ eine Schwartzfunktion ist und dass

$$\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \gamma(x) \, \mathrm{d}x = 1.$$

(Hinweis: Man betrachte die lineare gewöhnliche Differentialgleichung y'(x) + xy(x) = 0 für $x \in \mathbb{R}$ und zeige dass sowohl γ als auch $\mathscr{F}\gamma$ diese Differentialgleichung mit Anfangswert y(0) = 1 lösen. Aus der Eindeutigkeit der Lösung des Anfangswertproblems folgt dann die Behauptung.)

Die Gaußhalbgruppe T auf $L^2(\mathbb{R})$ ist definiert durch

$$T(t)f(x) := \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} e^{-\frac{(x-y)^2}{4t}} f(y) \, \mathrm{d}y$$

für $x \in \mathbb{R}$, $f \in L^2(\mathbb{R})$ und t > 0 sowie T(0) := I. Für jedes t > 0 ist also $T(t)f = k_t * f$ für $f \in L^2(\mathbb{R})$, wenn wir für $x \in \mathbb{R}$

$$k_t(x) \coloneqq \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}$$

setzen.

- (iii) Zeige, dass $T(t) \in \mathcal{L}(L^2(\mathbb{R}))$ für jedes t > 0. (1)
- (iv) Zeige, dass durch $S(t) := \mathscr{F}T(t)\mathscr{F}^{-1}$ für $t \geq 0$ gerade die Diagonalhalbgruppe auf L²(\mathbb{R}) (2) gegeben ist, welche durch die Funktion

$$q: \mathbb{R} \longrightarrow \mathbb{C}, \quad x \mapsto -x^2$$

induziert wird. (Hinweis: Zeige dies (wie in der Vorlesung) zunächst auf dem dichten Unterraum $\mathscr{FS}(\mathbb{R}) = \mathscr{S}(\mathbb{R})$. Verwende dabei die Teilaufgaben (i)* und (ii)*. Folgere anschließend mit Teilaufgabe (iii) die Gleichheit auf ganz $L^2(\mathbb{R})$.)

(v) Schließe, dass T eine C_0 -Halbgruppe mit Generator A ist, wobei (2)

$$D(A) = W^{2,2}(\mathbb{R}), \quad Af = f'' \text{ für alle } f \in D(A).$$