

UNIVERSITÄT ULM

Submission: Wednesday, 03.05.2017 Prof. Dr. Wolfgang Arendt Henrik Kreidler Sommersemester 2017 Points total: 16 + 4*

Evolutionsgleichungen: Exercise Sheet 2

Submission in pairs is possible. If you have any questions or need a hint, send a mail to henrik.kreidler@uni-ulm.de. Exercises marked with * are bonus exercises.

- **1.** Let X be a Banach space and A an operator on X with domain D(A). Equipped with the graph norm $\|\cdot\|$ defined by $\|x\|_A \coloneqq \|x\| + \|Ax\|$ for $x \in D(A)$ the domain D(A) is a normed space.
 - (i) Show that A is a closed operator if and only if $(D(A), \|\cdot\|_A)$ is a Banach space. (2)
 - (ii) The operator A is called *closable* if there is a closed operator B on X such that A is a *restriction* (2) of B (in symbols: $A \subseteq B$), i.e., $D(A) \subseteq D(B)$ and Ax = Bx for all $x \in D(A)$. Show that if A is closable, then there is a smallest closed operator \overline{A} (called the *closure of* A) with $A \subseteq \overline{A}$.
- **2.** Determine the generator of the *diagonal semigroup* M_q on $C_0(\mathbb{R})$ of exercise sheet 1, exercise 4. (4)
- **3.** Consider a C_0 -semigroup T on a Banach space X with generator (A, D(A)). Show that the following semigroups S are strongly continuous and determine their generators.
 - (i) $S(t) \coloneqq e^{\alpha t} T(\beta t)$ for all $t \ge 0$ where $\alpha \in \mathbb{C}$ and $\beta > 0$ are fixed parameters. (1)
 - (ii) $S(t) \coloneqq V^{-1}T(t)V$ for all $t \ge 0$ where $V \colon Y \longrightarrow X$ is an isomorphism from a Banach space Y (1) to X.
 - (iii) $S(t) \coloneqq T(t)|_Z$ for all $t \ge 0$ where $Z \subseteq X$ is a closed subspace of X with $T(t)Z \subseteq Z$ for all (1) $t \ge 0$.
- **4.** Given two functions $f, g \in L^2(\mathbb{R})$ we define their *convolution* f * g by

$$f * g(x) \coloneqq \int_{\mathbb{R}} f(x-y)g(y) \, \mathrm{d}y \text{ for } x \in \mathbb{R}.$$

Moreover, we denote the Fourier transformation by $\mathscr{F} \in \mathscr{L}(L^2(\mathbb{R}))$.

(i)* Show that for two Schwartz functions $f, g \in \mathscr{S}(\mathbb{R})$ the convolution f * g is also contained in (2*) $\mathscr{S}(\mathbb{R})$ and satisfies

$$\mathscr{F}(f * g) = \sqrt{2\pi} \cdot \mathscr{F}f \cdot \mathscr{F}g.$$

(ii)* Show that the function $\gamma \in \mathscr{S}(\mathbb{R})$ given by $\gamma(x) = e^{-\frac{x^2}{2}}$ for $x \in \mathbb{R}$ is a fixed point of \mathscr{F} , i.e., (2*) $\mathscr{F}\gamma = \gamma$. You may use that γ is a Schwartz function and that

$$\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \gamma(x) \, \mathrm{d}x = 1$$

holds. (Hint: Consider the linear ordinary differential equation y'(x) + xy(x) = 0 for $x \in \mathbb{R}$ and show that γ and $\mathscr{F}\gamma$ both solve this equation with initial condition y(0) = 1. Uniqueness of the solution of this initial value problem then implies the claim.)

The Gauss semigroup T on $L^2(\mathbb{R})$ is defined by

$$T(t)f(x) \coloneqq \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} e^{-\frac{(x-y)^2}{4t}} f(y) \,\mathrm{d}y$$

for $x \in \mathbb{R}$, $f \in L^2(\mathbb{R})$ and t > 0 as well as $T(0) \coloneqq I$. Consequently, for each t > 0 we have $T(t)f = k_t * f$ for $f \in L^2(\mathbb{R})$, if we set

$$k_t(x) \coloneqq \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}$$

for all $x \in \mathbb{R}$.

- (iii) Show that $T(t) \in \mathscr{L}(L^2(\mathbb{R}))$ for each t > 0.
- (iv) Show that the semigroup given by $S(t) := \mathscr{F}T(t)\mathscr{F}^{-1}$ for $t \ge 0$ is the diagonal semigroup on (2) $L^2(\mathbb{R})$ induced by the function

$$q \colon \mathbb{R} \longrightarrow \mathbb{C}, \quad x \mapsto -x^2.$$

(Hint: Show this on the dense subspace $\mathscr{FS}(\mathbb{R}) = \mathscr{S}(\mathbb{R})$ first (as in the lecture) using (i)* and (ii)*. Then use (iii) to show equality on all of $L^2(\mathbb{R})$.)

(v) Conclude that T is a C_0 -semigroup with generator A where

$$D(A) = W^{2,2}(\mathbb{R}), \quad Af = f'' \text{ for all } f \in D(A)$$

(2)