Evolutionsgleichungen: Exercise Sheet 4

Submission in pairs is possible. If you have any questions or need a hint, send a mail to henrik.kreidler@uni-ulm.de.
Exercises marked with * are bonus exercises.

1. Let $q: \mathbb{R} \longrightarrow \mathbb{C}$ be continuous and M_{q} the associated multiplication operator on $\mathrm{C}_{0}(\mathbb{R})$, i.e.,

$$
\begin{align*}
& D\left(M_{q}\right):=\left\{f \in C_{0}(\mathbb{R}): q f \in \mathrm{C}_{0}(\mathbb{R})\right\} \\
& M_{q} f:=q f \text { for all } f \in D\left(M_{q}\right) \tag{*}
\end{align*}
$$

(i) Show that $\sigma\left(M_{q}\right)=\overline{q(\mathbb{R})}$.
(Hint: Since $\lambda-M_{q}=M_{\lambda-q}$ for $\lambda \in \mathbb{C}$ it suffices to show that $0 \notin \overline{q(M)}$ if and only if M_{q} is invertible with bounded inverse. Show - by looking at suitable functions - that the existence of a bounded inverse of M_{q} implies that $|q|$ has a lower bound.)
(ii) Apply the Hille-Yosida theorem to show that $\left(M_{q}, D\left(M_{q}\right)\right.$) generates a contractive C_{0}-semigroup if and only if $\operatorname{Re} q(x) \leq 0$ for all $x \in \mathbb{R}$.
2. Consider the operator $(A, D(A))$ on $\mathrm{C}_{0}((0,1))$, where

$$
\begin{equation*}
\mathrm{C}_{0}((0,1)):=\{f \in \mathrm{C}((0,1)): \forall \varepsilon>0 \exists \delta \in(0,1) \text { with }|f(x)| \leq \varepsilon \text { for } x \notin[\delta, 1-\delta]\} \tag{4}
\end{equation*}
$$

as well as $D(A):=\left\{f \in \mathrm{C}^{2}([0,1]): f, f^{\prime \prime} \in \mathrm{C}_{0}((0,1))\right\}$ and $A f:=f^{\prime \prime}$ for $f \in D(A)$. Use the Lumer-Phillips theorem to show that $(A, D(A))$ generates a contractive C_{0}-semigroup on $\mathrm{C}_{0}((0,1))$. (Hint: To see that the operator is dissipative, choose $x \in(0,1)$ with $|f(x)|=\|f\|$. Then find a suitable $\alpha \in \mathbb{C}$ with $\mu:=\alpha \cdot \delta_{x} \in J(f)$ and $\operatorname{Re}\langle A f, \mu\rangle \leq 0$; here δ_{x} denotes the evaluation in x.)
3. Let $\Omega \subseteq \mathbb{R}^{d}$ be open and

$$
\begin{equation*}
\mathrm{H}_{0}^{1}(\Omega, \mathbb{R}):={\overline{\mathrm{C}_{\mathrm{c}}^{\infty}(\Omega, \mathbb{R})}}^{\mathrm{H}^{1}(\Omega, \mathbb{R})} \subseteq \mathrm{H}^{1}(\Omega, \mathbb{R}) . \tag{4}
\end{equation*}
$$

For $i, j \in\{1, \ldots, d\}$ let $a_{i j} \in \mathrm{~L}^{\infty}(\Omega, \mathbb{R})$ with $a_{i j}=a_{j i}$ for all $i, j \in\{1, \ldots, d\}$ and assume that there is $\alpha>0$ with

$$
\sum_{i, j} a_{i, j}(x) \xi_{i} \xi_{j} \geq \alpha\|\xi\|_{2}^{2}
$$

for all $\xi \in \mathbb{R}^{d}$ and almost every $x \in \Omega$. We consider the elliptic operator $(A, D(A))$ given by

$$
\begin{aligned}
& D(A):=\left\{u \in \mathrm{H}_{0}^{1}(\Omega): \sum_{i, j} D_{i}\left(a_{i, j} D_{j} u\right) \in \mathrm{L}^{2}(\Omega, \mathbb{R})\right\}, \\
& A u:=\sum_{i, j} D_{i}\left(a_{i, j} D_{j} u\right) \text { for } u \in D(A) .
\end{aligned}
$$

A reminder: Recall that by the lecture

$$
\sum_{i, j} D_{i}\left(a_{i, j} D_{j} u\right) \in \mathrm{L}^{2}(\Omega, \mathbb{R})
$$

means that there is $f \in \mathrm{~L}^{2}(\Omega, \mathbb{R})$ with

$$
-\int_{\Omega} \sum_{i, j}\left(a_{i, j} D_{j} u\right) D_{i} \varphi \mathrm{~d} x=\int_{\Omega} f \varphi \mathrm{~d} x
$$

for all $\varphi \in \mathrm{C}_{\mathrm{c}}^{\infty}(\Omega, \mathbb{R})$ and in this case we set

$$
\sum_{i, j} D_{i}\left(a_{i, j} D_{j} u\right):=f
$$

Use the Lumer-Phillips theorem to show that $(A, D(A))$ generates a contractive C_{0}-semigroup on $\mathrm{L}^{2}(\Omega, \mathbb{R})$.
(Hint: Show that

$$
[u, v]:=\int_{\Omega} u v \mathrm{~d} x+\sum_{i, j} \int_{\Omega} a_{i j} D_{i} u D_{j} v \mathrm{~d} x
$$

for $u, v \in \mathrm{H}_{0}^{1}(\Omega, \mathbb{R})$ defines an inner product on $\mathrm{H}_{0}^{1}(\Omega, \mathbb{R})$, which is equivalent to the ordinary inner product (\cdot, \cdot) on $\mathrm{H}_{0}^{1}(\Omega, \mathbb{R})$, i.e., there are $\alpha, \beta>0$ with

$$
\alpha(u, u) \leq[u, u] \leq \beta(u, u)
$$

for all $u \in \mathrm{H}_{0}^{1}(\Omega, \mathbb{R})$. Then use (as in the lecture) the Riesz-Fréchet theorem for the Hilbert space $\left(\mathrm{H}_{0}^{1}(\Omega, \mathbb{R}),[\cdot, \cdot]\right)$ in order to show that $I-A$ is surjective.)
4. Let $(A, D(A))$ be a densely defined operator on a Banach space X and $\left(A^{\prime}, D\left(A^{\prime}\right)\right)$ its adjoint. Show that if $\lambda \in \varrho(A)$, then also $\lambda \in \varrho\left(A^{\prime}\right)$ and $R(\lambda, A)^{\prime}=R\left(\lambda, A^{\prime}\right)$.

